Browsing by Author "Lin, Shihong"
Results Per Page
Sort Options
Item Open Access Deposition of Nano-scale Particles in Aqueous Environments --Influence of Particle Size, Surface Coating, and Aggregation State(2012) Lin, ShihongThis work considers the transport and attachment of nanoscale particles to surfaces and the associated phenomena that dictate particle-surface interactions. A consideration of the deposition of nano-scale particles on surfaces is a natural outgrowth of more than a century of research in the area of colloid science, and has taken on new pertinence in the context of understanding the fate and transport of engineered nanoparticles in aqueous environments. More specifically, the goal of this work is to better understand the effects of particle size, surface polymer coatings, and aggregation state on the kinetics of nanoparticle deposition. Theoretical tools such as those developed by Derjaguin-Landau-Verwey-Overbeek (DLVO) and Flory-Krigbaum , as well as the soft particle theory and surface element integration scaling methods are employed to address certain problems that were not considered with the existing theoretical frameworks for the conventional colloidal problems. Consequences of theoretical predictions are evaluated experimentally using column experiments or the quartz crystal microbalance techniques to monitor deposition kinetics. One of the key findings of this work is the observation that polymer coatings may stabilize nanoparticles against deposition or increase deposition, depending on whether the polymer coatings exist on both of the interacting surfaces and the interaction between the polymer and the collector surface. Both steric and bridging mechanisms are possible depending on whether contact between the polymer and collector surface can result in successful attachment. In addition, limitations in the use of conventional, equilibrium-based DLVO theory to describe the deposition of nano-scale particles at very low ionic strength are also identified and discussed. Moreover, it is demonstrated that the interaction between the aggregated nano-scale particles and environmental surfaces is controlled by the characteristic size of the primary particles rather than that of the aggregates. Thus despite an increase in hydrodynamic diameter, aggregation is predicted to reduce deposition only from the hydrodynamic aspects, but not from the colloidal interaction aspect. The affinity between aggregated nanoparticles and a surface may be increased at the initial stage of deposition while being unaffected by aggregation state during later stages of deposition. The results of this study lead to better understandings, at least on a qualitative level, of the factors that controlling the kinetics of deposition and, in a broader sense, the fate and transport of nanoscale particles in the aqueous environment.
Item Open Access Deposition of silver nanoparticles in geochemically heterogeneous porous media: predicting affinity from surface composition analysis.(2011) Lin, ShihongThe transport of uncoated silver nanoparticles (AgNPs) in a porous medium composed of silica glass beads modified with a partial coverage of iron oxide (hematite) was studied and compared to that in a porous medium composed of unmodified glass beads (GB). At a pH lower than the point of zero charge (PZC) of hematite, the affinity of AgNPs for a hematite-coated glass bead (FeO-GB) surface was significantly higher than that for an uncoated surface. There was a linear correlation between the average nanoparticle affinity for media composed of mixtures of FeO-GB and GB collectors and the relative composition of those media as quantified by the attachment efficiency over a range of mixing mass ratios of the two types of collectors, so that the average AgNPs affinity for these media is readily predicted from the mass (or surface) weighted average of affinities for each of the surface types. X-ray photoelectron spectroscopy (XPS) was used to quantify the composition of the collector surface as a basis for predicting the affinity between the nanoparticles for a heterogeneous collector surface. A correlation was also observed between the local abundances of AgNPs and FeO on the collector surface.Item Open Access Exact analytical expressions for the potential of electrical double layer interactions for a sphere-plate system.(Langmuir, 2010-11-16) Lin, Shihong; Wiesner, Mark RExact, closed-form analytical expressions are presented for evaluating the potential energy of electrical double layer (EDL) interactions between a sphere and an infinite flat plate for three different types of interactions: constant potential, constant charge, and an intermediate case as given by the linear superposition approximation (LSA). By taking advantage of the simpler sphere-plate geometry, simplifying assumptions used in the original Derjaguin approximation (DA) for sphere-sphere interaction are avoided, yielding expressions that are more accurate and applicable over the full range of κa. These analytical expressions are significant improvements over the existing equations in the literature that are valid only for large κa because the new equations facilitate the modeling of EDL interactions between nanoscale particles and surfaces over a wide range of ionic strength.Item Open Access Heterogeneities in fullerene nanoparticle aggregates affecting reactivity, bioactivity, and transport.(ACS Nano, 2010-09-28) Chae, So-Ryong; Badireddy, Appala R; Farner Budarz, Jeffrey; Lin, Shihong; Xiao, Yao; Therezien, Mathieu; Wiesner, Mark RProperties of nanomaterial suspensions are typically summarized by average values for the purposes of characterizing these materials and interpreting experimental results. We show in this work that the heterogeneity in aqueous suspensions of fullerene C(60) aggregates (nC(60)) must be taken into account for the purposes of predicting nanomaterial transport, exposure, and biological activity. The production of reactive oxygen species (ROS), microbial inactivation, and the mobility of the aggregates of the nC(60) in a silicate porous medium all increased as suspensions were fractionated to enrich with smaller aggregates by progressive membrane filtration. These size-dependent differences are attributed to an increasing degree of hydroxylation of nC(60) aggregates with decreasing size. As the quantity and influence of these more reactive fractions may increase with time, experiments evaluating fullerene transport and toxicity end points must take into account the evolution and heterogeneity of fullerene suspensions.