Browsing by Author "Lisanby, Sarah H"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Open Access Effects of online repetitive transcranial magnetic stimulation (rTMS) on cognitive processing: A meta-analysis and recommendations for future studies.(Neuroscience and biobehavioral reviews, 2019-12) Beynel, Lysianne; Appelbaum, Lawrence G; Luber, Bruce; Crowell, Courtney A; Hilbig, Susan A; Lim, Wesley; Nguyen, Duy; Chrapliwy, Nicolas A; Davis, Simon W; Cabeza, Roberto; Lisanby, Sarah H; Deng, Zhi-DeOnline repetitive transcranial magnetic stimulation (rTMS), applied while subjects are performing a task, is widely used to disrupt brain regions underlying cognition. However, online rTMS has also induced "paradoxical enhancement". Given the rapid proliferation of this approach, it is crucial to develop a better understanding of how online stimulation influences cognition, and the optimal parameters to achieve desired effects. To accomplish this goal, a quantitative meta-analysis was performed with random-effects models fitted to reaction time (RT) and accuracy data. The final dataset included 126 studies published between 1998 and 2016, with 244 total effects for reaction times, and 202 for accuracy. Meta-analytically, rTMS at 10 Hz and 20 Hz disrupted accuracy for attention, executive, language, memory, motor, and perception domains, while no effects were found with 1 Hz or 5 Hz. Stimulation applied at and 10 and 20 Hz slowed down RTs in attention and perception tasks. No performance enhancement was found. Meta-regression analysis showed that fMRI-guided targeting and short inter-trial intervals are associated with increased disruptive effects with rTMS.Item Open Access Low- and High-Frequency Repetitive Transcranial Magnetic Stimulation Effects on Resting-State Functional Connectivity Between the Postcentral Gyrus and the Insula.(Brain connectivity, 2019-05) Addicott, Merideth A; Luber, Bruce; Nguyen, Duy; Palmer, Hannah; Lisanby, Sarah H; Appelbaum, Lawrence GregoryThe insular cortex supports the conscious awareness of physical and emotional sensations, and the ability to modulate the insula could have important clinical applications in psychiatry. Repetitive transcranial magnetic stimulation (rTMS) uses transient magnetic fields to induce electrical currents in the superficial cortex. Given its deep location in the brain, the insula may not be directly stimulated by rTMS; however, rTMS may modulate the insula via its functional connections with superficial cortical regions. Furthermore, low- versus high-frequency rTMS is thought to have opposing effects on cortical excitability, and the present study investigated these effects on brain activity and functional connectivity with the insula. Separate groups of healthy participants (n = 14 per group) received low (1 Hz)- or high (10 Hz)-frequency rTMS in five daily sessions to the right postcentral gyrus, a superficial region known to be functionally connected to the insula. Resting-state functional connectivity (RSFC) was measured pre- and post-rTMS. Both 1 and 10 Hz rTMS increased RSFC between the right postcentral gyrus and the left insula. These results suggest that low- and high-frequency rTMS has similar long-term effects on brain activity and RSFC. However, given the lack of difference, we cannot exclude the possibility that these effects are simply due to a nonspecific effect. Given this limitation, these unexpected results underscore the need for acoustic- and stimulation-matched sham control conditions in rTMS research.Item Open Access Multifactorial determinants of the neurocognitive effects of electroconvulsive therapy.(J ECT, 2014-06) McClintock, Shawn M; Choi, Jimmy; Deng, Zhi-De; Appelbaum, Lawrence G; Krystal, Andrew D; Lisanby, Sarah HFor many patients with neuropsychiatric illnesses, standard psychiatric treatments with mono or combination pharmacotherapy, psychotherapy, and transcranial magnetic stimulation are ineffective. For these patients with treatment-resistant neuropsychiatric illnesses, a main therapeutic option is electroconvulsive therapy (ECT). Decades of research have found ECT to be highly effective; however, it can also result in adverse neurocognitive effects. Specifically, ECT results in disorientation after each session, anterograde amnesia for recently learned information, and retrograde amnesia for previously learned information. Unfortunately, the neurocognitive effects and underlying mechanisms of action of ECT remain poorly understood. The purpose of this paper was to synthesize the multiple moderating and mediating factors that are thought to underlie the neurocognitive effects of ECT into a coherent model. Such factors include demographic and neuropsychological characteristics, neuropsychiatric symptoms, ECT technical parameters, and ECT-associated neurophysiological changes. Future research is warranted to evaluate and test this model, so that these findings may support the development of more refined clinical seizure therapy delivery approaches and efficacious cognitive remediation strategies to improve the use of this important and widely used intervention tool for neuropsychiatric diseases.Item Open Access Network-level dynamics underlying a combined rTMS and psychotherapy treatment for major depressive disorder: An exploratory network analysis.(International journal of clinical and health psychology : IJCHP, 2023-10) Davis, Simon W; Beynel, Lysianne; Neacsiu, Andrada D; Luber, Bruce M; Bernhardt, Elisabeth; Lisanby, Sarah H; Strauman, Timothy JBackground
Despite the growing use of repetitive transcranial magnetic stimulation (rTMS) as a treatment for depression, there is a limited understanding of the mechanisms of action and how potential treatment-related brain changes help to characterize treatment response. To address this gap in understanding we investigated the effects of an approach combining rTMS with simultaneous psychotherapy on global functional connectivity.Method
We compared task-related functional connectomes based on an idiographic goal priming task tied to emotional regulation acquired before and after simultaneous rTMS/psychotherapy treatment for patients with major depressive disorders and compared these changes to normative connectivity patterns from a set of healthy volunteers (HV) performing the same task.Results
At baseline, compared to HVs, patients demonstrated hyperconnectivity of the DMN, cerebellum and limbic system, and hypoconnectivity of the fronto-parietal dorsal-attention network and visual cortex. Simultaneous rTMS/psychotherapy helped to normalize these differences, which were reduced after treatment. This finding suggests that the rTMS/therapy treatment regularizes connectivity patterns in both hyperactive and hypoactive brain networks.Conclusions
These results help to link treatment to a comprehensive model of the neurocircuitry underlying depression and pave the way for future studies using network-guided principles to significantly improve rTMS efficacy for depression.Item Open Access Neurocognitive Effects of Combined Electroconvulsive Therapy (ECT) and Venlafaxine in Geriatric Depression: Phase 1 of the PRIDE Study.(The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry, 2019-10-12) Lisanby, Sarah H; McClintock, Shawn M; Alexopoulos, George; Bailine, Samuel H; Bernhardt, Elisabeth; Briggs, Mimi C; Cullum, C Munro; Deng, Zhi-De; Dooley, Mary; Geduldig, Emma T; Greenberg, Robert M; Husain, Mustafa M; Kaliora, Styliani; Knapp, Rebecca G; Latoussakis, Vassilios; Liebman, Lauren S; McCall, William V; Mueller, Martina; Petrides, Georgios; Prudic, Joan; Rosenquist, Peter B; Rudorfer, Matthew V; Sampson, Shirlene; Teklehaimanot, Abeba A; Tobias, Kristen G; Weiner, Richard D; Young, Robert C; Kellner, Charles H; CORE/PRIDE Work GroupOBJECTIVE:There is limited information regarding the tolerability of electroconvulsive therapy (ECT) combined with pharmacotherapy in elderly adults with major depressive disorder (MDD). Addressing this gap, we report acute neurocognitive outcomes from Phase 1 of the Prolonging Remission in Depressed Elderly (PRIDE) study. METHODS:Elderly adults (age ≥60) with MDD received an acute course of 6 times seizure threshold right unilateral ultrabrief pulse (RUL-UB) ECT. Venlafaxine was initiated during the first treatment week and continued throughout the study. A comprehensive neurocognitive battery was administered at baseline and 72 hours following the last ECT session. Statistical significance was defined as a two-sided p-value of less than 0.05. RESULTS:A total of 240 elderly adults were enrolled. Neurocognitive performance acutely declined post ECT on measures of psychomotor and verbal processing speed, autobiographical memory consistency, short-term verbal recall and recognition of learned words, phonemic fluency, and complex visual scanning/cognitive flexibility. The magnitude of change from baseline to end for most neurocognitive measures was modest. CONCLUSION:This is the first study to characterize the neurocognitive effects of combined RUL-UB ECT and venlafaxine in elderly adults with MDD and provides new evidence for the tolerability of RUL-UB ECT in an elderly sample. Of the cognitive domains assessed, only phonemic fluency, complex visual scanning, and cognitive flexibility qualitatively declined from low average to mildly impaired. While some acute changes in neurocognitive performance were statistically significant, the majority of the indices as based on the effect sizes remained relatively stable.Item Open Access On the Concurrent Use of Self-System Therapy and Functional Magnetic Resonance Imaging-Guided Transcranial Magnetic Stimulation as Treatment for Depression.(The journal of ECT, 2018-12) Neacsiu, Andrada D; Luber, Bruce M; Davis, Simon W; Bernhardt, Elisabeth; Strauman, Timothy J; Lisanby, Sarah HObjectives
Despite the growing use of repetitive transcranial magnetic stimulation (rTMS) as a treatment for unipolar depression, its typical effect sizes have been modest, and methodological and conceptual challenges remain regarding how to optimize its efficacy. Linking rTMS to a model of the neurocircuitry underlying depression and applying such a model to personalize the site of stimulation may improve the efficacy of rTMS. Recent developments in the psychology and neurobiology of self-regulation offer a conceptual framework for identifying mechanisms of action in rTMS for depression, as well as for developing guidelines for individualized rTMS treatment. We applied this framework to develop a multimodal treatment for depression by pairing self-system therapy (SST) with simultaneously administered rTMS delivered to an individually targeted region of dorsolateral prefrontal cortex identified via functional magnetic resonance imaging (fMRI).Methods
In this proof-of-concept study, we examined the acceptability, feasibility, and preliminary efficacy of combining individually fMRI-targeted rTMS with SST. Using the format of a cognitive paired associative stimulation paradigm, the treatment was administered to 5 adults with unipolar depression in an open-label trial.Results
The rTMS/SST combination was well tolerated, feasible, and acceptable. Preliminary evidence of efficacy also was promising. We hypothesized that both treatment modalities were targeting the same neural circuitry through cognitive paired associative stimulation, and observed changes in task-based fMRI were consistent with our model. These neural changes were directly related to improvements in depression severity.Conclusions
The new combination treatment represents a promising exemplar for theory-based, individually targeted, multimodal intervention in mood disorders.Item Open Access Reprint of ''Using neuroimaging to individualize TMS treatment for depression: Toward a new paradigm for imaging-guided intervention''.(NeuroImage, 2017-05) Luber, Bruce M; Davis, Simon; Bernhardt, Elisabeth; Neacsiu, Andrada; Kwapil, Lori; Lisanby, Sarah H; Strauman, Timothy JThe standard clinical technique for using repetitive transcranial magnetic stimulation (rTMS) for major depressive disorder (MDD) is associated with limited efficacy to date. Such limited efficacy may be due to reliance on scalp-based targeting rather than state-of-the-science methods which incorporate fMRI-guided neuronavigation based on a specific model of neurocircuit dysfunction. In this review, we examine such a specific model drawn from regulatory focus theory, which postulates two brain/behavior systems, the promotion and prevention systems, underlying goal pursuit. Individual differences in these systems have been shown to predict vulnerability to MDD as well as to comorbid generalized anxiety disorder (GAD). Activation of an individual's promotion or prevention goals via priming leads to motivational and affective responses modulated by the individual's appraisal of their progress in attaining the goal. In addition, priming promotion vs. prevention goals induces discriminable patterns of brain activation that are sensitive to the effects of depression and anxiety: MDD is associated with promotion system failure, anhedonic/dysphoric symptoms, and hypoactivation in specific regions in left prefrontal cortex, whereas GAD is associated with prevention system failure, hypervigilant/agitated symptoms, and hyperactivation in right prefrontal cortex (PFC). These left and right PFC locations can be directly targeted in an individualized manner for TMS. Additionally, this individually targeted rTMS can be integrated with cognitive interventions designed to activate the neural circuitry associated with promotion vs. prevention, thus allowing the neuroplasticity induced by the rTMS to benefit the systems likely to be involved in remediating depression. Targeted engagement of cortical systems involved in emotion regulation using individualized fMRI guidance may help increase the efficacy of rTMS in depression.Item Open Access Site-Specific Effects of Online rTMS during a Working Memory Task in Healthy Older Adults.(Brain sciences, 2020-04-27) Beynel, Lysianne; Davis, Simon W; Crowell, Courtney A; Dannhauer, Moritz; Lim, Wesley; Palmer, Hannah; Hilbig, Susan A; Brito, Alexandra; Hile, Connor; Luber, Bruce; Lisanby, Sarah H; Peterchev, Angel V; Cabeza, Roberto; Appelbaum, Lawrence GThe process of manipulating information within working memory is central to many cognitive functions, but also declines rapidly in old age. Improving this process could markedly enhance the health-span in older adults. The current pre-registered, randomized and placebo-controlled study tested the potential of online repetitive transcranial magnetic stimulation (rTMS) applied at 5 Hz over the left lateral parietal cortex to enhance working memory manipulation in healthy elderly adults. rTMS was applied, while participants performed a delayed-response alphabetization task with two individually titrated levels of difficulty. Coil placement and stimulation amplitude were calculated from fMRI activation maps combined with electric field modeling on an individual-subject basis in order to standardize dosing at the targeted cortical location. Contrary to the a priori hypothesis, active rTMS significantly decreased accuracy relative to sham, and only in the hardest difficulty level. When compared to the results from our previous study, in which rTMS was applied over the left prefrontal cortex, we found equivalent effect sizes but opposite directionality suggesting a site-specific effect of rTMS. These results demonstrate engagement of cortical working memory processing using a novel TMS targeting approach, while also providing prescriptions for future studies seeking to enhance memory through rTMS.Item Open Access Using neuroimaging to individualize TMS treatment for depression: Toward a new paradigm for imaging-guided intervention.(Neuroimage, 2017-03-01) Luber, Bruce M; Davis, Simon; Bernhardt, Elisabeth; Neacsiu, Andrada; Kwapil, Lori; Lisanby, Sarah H; Strauman, Timothy JThe standard clinical technique for using repetitive transcranial magnetic stimulation (rTMS) for major depressive disorder (MDD) is associated with limited efficacy to date. Such limited efficacy may be due to reliance on scalp-based targeting rather than state-of-the-science methods which incorporate fMRI-guided neuronavigation based on a specific model of neurocircuit dysfunction. In this review, we examine such a specific model drawn from regulatory focus theory, which postulates two brain/behavior systems, the promotion and prevention systems, underlying goal pursuit. Individual differences in these systems have been shown to predict vulnerability to MDD as well as to comorbid generalized anxiety disorder (GAD). Activation of an individual's promotion or prevention goals via priming leads to motivational and affective responses modulated by the individual's appraisal of their progress in attaining the goal. In addition, priming promotion vs. prevention goals induces discriminable patterns of brain activation that are sensitive to the effects of depression and anxiety: MDD is associated with promotion system failure, anhedonic/dysphoric symptoms, and hypoactivation in specific regions in left prefrontal cortex, whereas GAD is associated with prevention system failure, hypervigilant/agitated symptoms, and hyperactivation in right prefrontal cortex (PFC). These left and right PFC locations can be directly targeted in an individualized manner for TMS. Additionally, this individually targeted rTMS can be integrated with cognitive interventions designed to activate the neural circuitry associated with promotion vs. prevention, thus allowing the neuroplasticity induced by the rTMS to benefit the systems likely to be involved in remediating depression. Targeted engagement of cortical systems involved in emotion regulation using individualized fMRI guidance may help increase the efficacy of rTMS in depression.Item Open Access Utilizing transcranial direct current stimulation to enhance laparoscopic technical skills training: A randomized controlled trial.(Brain stimulation, 2020-05) Cox, Morgan L; Deng, Zhi-De; Palmer, Hannah; Watts, Amanda; Beynel, Lysianne; Young, Jonathan R; Lisanby, Sarah H; Migaly, John; Appelbaum, Lawrence GBACKGROUND:Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that delivers constant, low electrical current resulting in changes to cortical excitability. Prior work suggests it may enhance motor learning giving it the potential to augment surgical technical skill acquisition. OBJECTIVES:The aim of this study was to test the efficacy of tDCS, coupled with motor skill training, to accelerate laparoscopic skill acquisition in a pre-registered (NCT03083483), double-blind and placebo-controlled study. We hypothesized that relative to sham tDCS, active tDCS would accelerate the development of laparoscopic technical skills, as measured by the Fundamentals of Laparoscopic Surgery (FLS) Peg Transfer task quantitative metrics. METHODS:In this study, sixty subjects (mean age 22.7 years with 42 females) were randomized into sham or active tDCS in either bilateral primary motor cortex (bM1) or supplementary motor area (SMA) electrode configurations. All subjects practiced the FLS Peg Transfer Task during six 20-min training blocks, which were preceded and followed by a single trial pre-test and post-test. The primary outcome was changes in laparoscopic skill performance over time, quantified by group differences in completion time from pre-test to post-test and learning curves developed from a calculated score accounting for errors. RESULTS:Learning curves calculated over the six 20-min training blocks showed significantly greater improvement in performance for the bM1 group than the sham group (t = 2.07, p = 0.039), with the bM1 group achieving approximately the same amount of improvement in 4 blocks compared to the 6 blocks required of the sham group. The SMA group also showed greater mean improvement than sham, but exhibited more variable learning performance and differences relative to sham were not significant (t = 0.85, p = 0.400). A significant main effect was present for pre-test versus post-test times (F = 133.2, p < 0.001), with lower completion times at post-test, however these did not significantly differ for the training groups. CONCLUSION:Laparoscopic skill training with active bilateral tDCS exhibited significantly greater learning relative to sham. The potential for tDCS to enhance the training of surgical skills, therefore, merits further investigation to determine if these preliminary results may be replicated and extended.