Browsing by Author "Liu, Jun"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions.(PLoS One, 2010-09-09) Wu, Shenping; Liu, Jun; Reedy, Mary C; Tregear, Richard T; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E; Reedy, Michael K; Taylor, Kenneth ABACKGROUND: Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. METHODOLOGY: We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the "target zone", situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. CONCLUSION: We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from strong binding attachments.Item Open Access GRK5 Deficiency Leads to Selective Basal Forebrain Cholinergic Neuronal Vulnerability.(Sci Rep, 2016-05-19) He, Minchao; Singh, Prabhakar; Cheng, Shaowu; Zhang, Qiang; Peng, Wei; Ding, XueFeng; Li, Longxuan; Liu, Jun; Premont, Richard T; Morgan, Dave; Burns, Jeffery M; Swerdlow, Russell H; Suo, William ZWhy certain diseases primarily affect one specific neuronal subtype rather than another is a puzzle whose solution underlies the development of specific therapies. Selective basal forebrain cholinergic (BFC) neurodegeneration participates in cognitive impairment in Alzheimer's disease (AD), yet the underlying mechanism remains elusive. Here, we report the first recapitulation of the selective BFC neuronal loss that is typical of human AD in a mouse model termed GAP. We created GAP mice by crossing Tg2576 mice that over-express the Swedish mutant human β-amyloid precursor protein gene with G protein-coupled receptor kinase-5 (GRK5) knockout mice. This doubly defective mouse displayed significant BFC neuronal loss at 18 months of age, which was not observed in either of the singly defective parent strains or in the wild type. Along with other supporting evidence, we propose that GRK5 deficiency selectively renders BFC neurons more vulnerable to degeneration.Item Open Access MicroRNA variants increase the risk of HPV-associated squamous cell carcinoma of the oropharynx in never smokers.(PloS one, 2013-01) Song, Xicheng; Sturgis, Erich M; Liu, Jun; Jin, Lei; Wang, Zhongqiu; Zhang, Caiyun; Wei, Qingyi; Li, GuojunBoth microRNAs and human papillomavirus (HPV) infection play an important role in the development and progression of oral squamous cell carcinoma (OSCC). In addition, microRNAs affect all facets of the immune/inflammation responses to infection, which may control HPV clearance. We thus hypothesized that microRNA polymorphisms modify the association between HPV16 seropositivity and OSCC risk.Four single-nucleotide polymorphisms in microRNAs were genotyped and HPV16 serology was determined in 325 cases and 335 matched controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using univariate and multivariable logistic regression models.Overall, each polymorphism had no significant main effect on OSCC risk. Compared with the risk among individuals with both miR146 rs2910164 GG genotype and HPV16 seronegativity, risk of OSCC was increased among those with CG or CC genotype and HPV16 seronegativity (OR, 1.2; 95% CI, 0.9-1.8), GG genotype and HPV16 seropositivity (OR, 3.0; 95% CI, 1.8-5.0), and CG or CC genotype and HPV16 seropositivity (OR, 4.7; 95% CI, 2.3-9.4). Similar results were found for miR149 rs2292832, miR196 rs11614913, and miR499 rs3746444. Analyses stratified by tumor sites and smoking status showed that each polymorphism significantly increased the risk of HPV16-associated squamous cell carcinoma of the oropharynx (SCCOP), and such effect modification was particularly prominent in never smokers.Our results indicate that microRNA polymorphisms modify the risk of OSCC associated with HPV16 seropositivity, particularly in patients with SCCOP and never smokers. Larger studies are needed to verify our findings.