Browsing by Author "Liu, Xue-Song"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer.(Nature genetics, 2018-02) Chen, Ming; Zhang, Jiangwen; Sampieri, Katia; Clohessy, John G; Mendez, Lourdes; Gonzalez-Billalabeitia, Enrique; Liu, Xue-Song; Lee, Yu-Ru; Fung, Jacqueline; Katon, Jesse M; Menon, Archita Venugopal; Webster, Kaitlyn A; Ng, Christopher; Palumbieri, Maria Dilia; Diolombi, Moussa S; Breitkopf, Susanne B; Teruya-Feldstein, Julie; Signoretti, Sabina; Bronson, Roderick T; Asara, John M; Castillo-Martin, Mireia; Cordon-Cardo, Carlos; Pandolfi, Pier PaoloLipids, either endogenously synthesized or exogenous, have been linked to human cancer. Here we found that PML is frequently co-deleted with PTEN in metastatic human prostate cancer (CaP). We demonstrated that conditional inactivation of Pml in the mouse prostate morphs indolent Pten-null tumors into lethal metastatic disease. We identified MAPK reactivation, subsequent hyperactivation of an aberrant SREBP prometastatic lipogenic program, and a distinctive lipidomic profile as key characteristic features of metastatic Pml and Pten double-null CaP. Furthermore, targeting SREBP in vivo by fatostatin blocked both tumor growth and distant metastasis. Importantly, a high-fat diet (HFD) induced lipid accumulation in prostate tumors and was sufficient to drive metastasis in a nonmetastatic Pten-null mouse model of CaP, and an SREBP signature was highly enriched in metastatic human CaP. Thus, our findings uncover a prometastatic lipogenic program and lend direct genetic and experimental support to the notion that a Western HFD can promote metastasis.Item Open Access Vulnerabilities of PTEN-TP53-deficient prostate cancers to compound PARP-PI3K inhibition.(Cancer discovery, 2014-08) González-Billalabeitia, Enrique; Seitzer, Nina; Song, Su Jung; Song, Min Sup; Patnaik, Akash; Liu, Xue-Song; Epping, Mirjam T; Papa, Antonella; Hobbs, Robin M; Chen, Ming; Lunardi, Andrea; Ng, Christopher; Webster, Kaitlyn A; Signoretti, Sabina; Loda, Massimo; Asara, John M; Nardella, Caterina; Clohessy, John G; Cantley, Lewis C; Pandolfi, Pier PaoloProstate cancer is the most prevalent cancer in males, and treatment options are limited for advanced forms of the disease. Loss of the PTEN and TP53 tumor suppressor genes is commonly observed in prostate cancer, whereas their compound loss is often observed in advanced prostate cancer. Here, we show that PARP inhibition triggers a p53-dependent cellular senescence in a PTEN-deficient setting in the prostate. Surprisingly, we also find that PARP-induced cellular senescence is morphed into an apoptotic response upon compound loss of PTEN and p53. We further show that superactivation of the prosurvival PI3K-AKT signaling pathway limits the efficacy of a PARP single-agent treatment, and that PARP and PI3K inhibitors effectively synergize to suppress tumorigenesis in human prostate cancer cell lines and in a Pten/Trp53-deficient mouse model of advanced prostate cancer. Our findings, therefore, identify a combinatorial treatment with PARP and PI3K inhibitors as an effective option for PTEN-deficient prostate cancer.The paucity of therapeutic options in advanced prostate cancer displays an urgent need for the preclinical assessment of novel therapeutic strategies. We identified differential therapeutic vulnerabilities that emerge upon the loss of both PTEN and p53, and observed that combined inhibition of PARP and PI3K provides increased efficacy in hormone-insensitive advanced prostate cancer.