Browsing by Author "Lo, Justin Y"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access A diffuse reflectance spectral imaging system for tumor margin assessment using custom annular photodiode arrays.(Biomedical optics express, 2012-12) Dhar, Sulochana; Lo, Justin Y; Palmer, Gregory M; Brooke, Martin A; Nichols, Brandon S; Yu, Bing; Ramanujam, Nirmala; Jokerst, Nan MDiffuse reflectance spectroscopy (DRS) is a well-established method to quantitatively distinguish between benign and cancerous tissue for tumor margin assessment. Current multipixel DRS margin assessment tools are bulky fiber-based probes that have limited scalability. Reported herein is a new approach to multipixel DRS probe design, which utilizes direct detection of the DRS signal by using optimized custom photodetectors in direct contact with the tissue. This first fiberless DRS imaging system for tumor margin assessment consists of a 4 × 4 array of annular silicon photodetectors and a constrained free-space light delivery tube optimized to deliver light across a 256 mm(2) imaging area. This system has 4.5 mm spatial resolution. The signal-to-noise ratio measured for normal and malignant breast tissue-mimicking phantoms was 35 dB to 45 dB for λ = 470 nm to 600 nm.Item Open Access A low-cost, portable, and quantitative spectral imaging system for application to biological tissues.(Opt Express, 2010-06-07) Fu, Henry L; Yu, Bing; Lo, Justin Y; Palmer, Greg M; Kuech, Thomas F; Ramanujam, NimmiThe ability of diffuse reflectance spectroscopy to extract quantitative biological composition of tissues has been used to discern tissue types in both pre-clinical and clinical cancer studies. Typically, diffuse reflectance spectroscopy systems are designed for single-point measurements. Clinically, an imaging system would provide valuable spatial information on tissue composition. While it is feasible to build a multiplexed fiber-optic probe based spectral imaging system, these systems suffer from drawbacks with respect to cost and size. To address these we developed a compact and low cost system using a broadband light source with an 8-slot filter wheel for illumination and silicon photodiodes for detection. The spectral imaging system was tested on a set of tissue mimicking liquid phantoms which yielded an optical property extraction accuracy of 6.40 +/- 7.78% for the absorption coefficient (micro(a)) and 11.37 +/- 19.62% for the wavelength-averaged reduced scattering coefficient (micro(s)').Item Open Access Wavelength optimization for quantitative spectral imaging of breast tumor margins.(PloS one, 2013-01) Lo, Justin Y; Brown, J Quincy; Dhar, Sulochana; Yu, Bing; Palmer, Gregory M; Jokerst, Nan M; Ramanujam, NirmalaA wavelength selection method that combines an inverse Monte Carlo model of reflectance and a genetic algorithm for global optimization was developed for the application of spectral imaging of breast tumor margins. The selection of wavelengths impacts system design in cost, size, and accuracy of tissue quantitation. The minimum number of wavelengths required for the accurate quantitation of tissue optical properties is 8, with diminishing gains for additional wavelengths. The resulting wavelength choices for the specific probe geometry used for the breast tumor margin spectral imaging application were tested in an independent pathology-confirmed ex vivo breast tissue data set and in tissue-mimicking phantoms. In breast tissue, the optical endpoints (hemoglobin, β-carotene, and scattering) that provide the contrast between normal and malignant tissue specimens are extracted with the optimized 8-wavelength set with <9% error compared to the full spectrum (450-600 nm). A multi-absorber liquid phantom study was also performed to show the improved extraction accuracy with optimization and without optimization. This technique for selecting wavelengths can be used for designing spectral imaging systems for other clinical applications.