Browsing by Author "Lu, Liping"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Activation of the XBP1s/O-GlcNAcylation Pathway Improves Functional Outcome After Cardiac Arrest and Resuscitation in Young and Aged Mice.(Shock (Augusta, Ga.), 2021-11) Li, Ran; Shen, Yuntian; Li, Xuan; Lu, Liping; Wang, Zhuoran; Sheng, Huaxin; Hoffmann, Ulrike; Yang, WeiAbstract
After cardiac arrest (CA) and resuscitation, the unfolded protein response (UPR) is activated in various organs including the brain. However, the role of the UPR in CA outcome remains largely unknown. One UPR branch involves spliced X-box-binding protein-1 (XBP1s). Notably, XBP1s, a transcriptional factor, can upregulate expression of specific enzymes related to glucose metabolism, and subsequently boost O-linked β-N-acetylglucosamine modification (O-GlcNAcylation). The current study is focused on effects of the XBP1 UPR branch and its downstream O-GlcNAcylation on CA outcome. Using both loss-of-function and gain-of-function mouse genetic tools, we provide the first evidence that activation of the XBP1 UPR branch in the post-CA brain is neuroprotective. Specifically, neuron-specific Xbp1 knockout mice had worse CA outcome, while mice with neuron-specific expression of Xbp1s in the brain had better CA outcome. Since it has been shown that the protective role of the XBP1s signaling pathway under ischemic conditions is mediated by increasing O-GlcNAcylation, we then treated young mice with glucosamine, and found that functional deficits were mitigated on day 3 post CA. Finally, after confirming that glucosamine can boost O-GlcNAcylation in the aged brain, we subjected aged mice to 8 min CA, and then treated them with glucosamine. We found that glucosamine-treated aged mice performed significantly better in behavioral tests. Together, our data indicate that the XBP1s/O-GlcNAc pathway is a promising target for CA therapy.Item Open Access Cardiac arrest and resuscitation activates the hypothalamic-pituitary-adrenal axis and results in severe immunosuppression.(Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2021-05) Zhao, Qiang; Shen, Yuntian; Li, Ran; Wu, Jiangbo; Lyu, Jingjun; Jiang, Maorong; Lu, Liping; Zhu, Minghua; Wang, Wei; Wang, Zhuoran; Liu, Qiang; Hoffmann, Ulrike; Karhausen, Jörn; Sheng, Huaxin; Zhang, Weiguo; Yang, WeiIn patients who are successfully resuscitated after initial cardiac arrest (CA), mortality and morbidity rates are high, due to ischemia/reperfusion injury to the whole body including the nervous and immune systems. How the interactions between these two critical systems contribute to post-CA outcome remains largely unknown. Using a mouse model of CA and cardiopulmonary resuscitation (CA/CPR), we demonstrate that CA/CPR induced neuroinflammation in the brain, in particular, a marked increase in pro-inflammatory cytokines, which subsequently activated the hypothalamic-pituitary-adrenal (HPA) axis. Importantly, this activation was associated with a severe immunosuppression phenotype after CA. The phenotype was characterized by a striking reduction in size of lymphoid organs accompanied by a massive loss of immune cells and reduced immune function of splenic lymphocytes. The mechanistic link between post-CA immunosuppression and the HPA axis was substantiated, as we discovered that glucocorticoid treatment, which mimics effects of the activated HPA axis, exacerbated post-CA immunosuppression, while RU486 treatment, which suppresses its effects, significantly mitigated lymphopenia and lymphoid organ atrophy and improved CA outcome. Taken together, targeting the HPA axis could be a viable immunomodulatory therapeutic to preserve immune homeostasis after CA/CPR and thus improve prognosis of post-resuscitation CA patients.Item Open Access Chemogenetics-mediated acute inhibition of excitatory neuronal activity improves stroke outcome.(Experimental neurology, 2020-04) Wang, Ya-Chao; Galeffi, Francesca; Wang, Wei; Li, Xuan; Lu, Liping; Sheng, Huaxin; Hoffmann, Ulrike; Turner, Dennis A; Yang, WeiBackground and purpose
Ischemic stroke significantly perturbs neuronal homeostasis leading to a cascade of pathologic events causing brain damage. In this study, we assessed acute stroke outcome after chemogenetic inhibition of forebrain excitatory neuronal activity.Methods
We generated hM4Di-TG transgenic mice expressing the inhibitory hM4Di, a Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-based chemogenetic receptor, in forebrain excitatory neurons. Clozapine-N-oxide (CNO) was used to activate hM4Di DREADD. Ischemic stroke was induced by transient occlusion of the middle cerebral artery. Neurologic function and infarct volumes were evaluated. Excitatory neuronal suppression in the hM4Di-TG mouse forebrain was assessed electrophysiologically in vitro and in vivo, based on evoked synaptic responses, and in vivo based on occurrence of potassium-induced cortical spreading depolarizations.Results
Detailed characterization of hM4Di-TG mice confirmed that evoked synaptic responses in both in vitro hippocampal slices and in vivo motor cortex were significantly reduced after CNO-mediated activation of the inhibitory hM4Di DREADD. Further, CNO treatment had no obvious effects on physiology and motor function in either control or hM4Di-TG mice. Importantly, hM4Di-TG mice treated with CNO at either 10 min before ischemia or 30 min after reperfusion exhibited significantly improved neurologic function and smaller infarct volumes compared to CNO-treated control mice. Mechanistically, we showed that potassium-induced cortical spreading depression episodes were inhibited, including frequency and duration of DC shift, in CNO-treated hM4Di-TG mice.Conclusions
Our data demonstrate that acute inhibition of a subset of excitatory neurons after ischemic stroke can prevent brain injury and improve functional outcome. This study, together with the previous work in optogenetic neuronal modulation during the chronic phase of stroke, supports the notion that targeting neuronal activity is a promising strategy in stroke therapy.Item Open Access Development and Evaluation of a Novel Mouse Model of Asphyxial Cardiac Arrest Revealed Severely Impaired Lymphopoiesis After Resuscitation.(J Am Heart Assoc, 2021-05-20) Wang, Wei; Li, Ran; Miao, Wanying; Evans, Cody; Lu, Liping; Lyu, Jingjun; Li, Xuan; Warner, David S; Zhong, Xiaoping; Hoffmann, Ulrike; Sheng, Huaxin; Yang, WeiBackground Animal disease models represent the cornerstone in basic cardiac arrest (CA) research. However, current experimental models of CA and resuscitation in mice are limited. In this study, we aimed to develop a mouse model of asphyxial CA followed by cardiopulmonary resuscitation (CPR), and to characterize the immune response after asphyxial CA/CPR. Methods and Results CA was induced in mice by switching from an O2/N2 mixture to 100% N2 gas for mechanical ventilation under anesthesia. Real-time measurements of blood pressure, brain tissue oxygen, cerebral blood flow, and ECG confirmed asphyxia and ensuing CA. After a defined CA period, mice were resuscitated with intravenous epinephrine administration and chest compression. We subjected young adult and aged mice to this model, and found that after CA/CPR, mice from both groups exhibited significant neurologic deficits compared with sham mice. Analysis of post-CA brain confirmed neuroinflammation. Detailed characterization of the post-CA immune response in the peripheral organs of both young adult and aged mice revealed that at the subacute phase following asphyxial CA/CPR, the immune system was markedly suppressed as manifested by drastic atrophy of the spleen and thymus, and profound lymphopenia. Finally, our data showed that post-CA systemic lymphopenia was accompanied with impaired T and B lymphopoiesis in the thymus and bone marrow, respectively. Conclusions In this study, we established a novel validated asphyxial CA model in mice. Using this new model, we further demonstrated that asphyxial CA/CPR markedly affects both the nervous and immune systems, and notably impairs lymphopoiesis of T and B cells.Item Open Access Increasing O-GlcNAcylation is neuroprotective in young and aged brains after ischemic stroke.(Experimental neurology, 2021-05) Wang, Zhuoran; Li, Xuan; Spasojevic, Ivan; Lu, Liping; Shen, Yuntian; Qu, Xingguang; Hoffmann, Ulrike; Warner, David S; Paschen, Wulf; Sheng, Huaxin; Yang, WeiSpliced X-box binding protein-1 (XBP1s) together with the hexosamine biosynthetic pathway (HBP) and O-GlcNAcylation forms the XBP1s/HBP/O-GlcNAc axis. Our previous studies have provided evidence that activation of this axis is neuroprotective after ischemic stroke and critically, ischemia-induced O-GlcNAcylation is impaired in the aged brain. However, the XBP1s' neuroprotective role and its link to O-GlcNAcylation in stroke, as well as the therapeutic potential of targeting this axis in stroke, have not been well established. Moreover, the mechanisms underlying this age-related impairment of O-GlcNAcylation induction after brain ischemia remain completely unknown. In this study, using transient ischemic stroke models, we first demonstrated that neuron-specific overexpression of Xbp1s improved outcome, and pharmacologically boosting O-GlcNAcylation with thiamet-G reversed worse outcome observed in neuron-specific Xbp1 knockout mice. We further showed that thiamet-G treatment improved long-term functional recovery in both young and aged animals after transient ischemic stroke. Mechanistically, using an analytic approach developed here, we discovered that availability of UDP-GlcNAc was compromised in the aged brain, which may constitute a novel mechanism responsible for the impaired O-GlcNAcylation activation in the aged brain after ischemia. Finally, based on this new mechanistic finding, we evaluated and confirmed the therapeutic effects of glucosamine treatment in young and aged animals using both transient and permanent stroke models. Our data together support that increasing O-GlcNAcylation is a promising strategy in stroke therapy.