Browsing by Author "Luttrell, LM"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds.(Proc Natl Acad Sci U S A, 2001-02-27) Luttrell, LM; Roudabush, FL; Choy, EW; Miller, WE; Field, ME; Pierce, KL; Lefkowitz, RJUsing both confocal immunofluorescence microscopy and biochemical approaches, we have examined the role of beta-arrestins in the activation and targeting of extracellular signal-regulated kinase 2 (ERK2) following stimulation of angiotensin II type 1a receptors (AT1aR). In HEK-293 cells expressing hemagglutinin-tagged AT1aR, angiotensin stimulation triggered beta-arrestin-2 binding to the receptor and internalization of AT1aR-beta-arrestin complexes. Using red fluorescent protein-tagged ERK2 to track the subcellular distribution of ERK2, we found that angiotensin treatment caused the redistribution of activated ERK2 into endosomal vesicles that also contained AT1aR-beta-arrestin complexes. This targeting of ERK2 reflects the formation of multiprotein complexes containing AT1aR, beta-arrestin-2, and the component kinases of the ERK cascade, cRaf-1, MEK1, and ERK2. Myc-tagged cRaf-1, MEK1, and green fluorescent protein-tagged ERK2 coprecipitated with Flag-tagged beta-arrestin-2 from transfected COS-7 cells. Coprecipitation of cRaf-1 with beta-arrestin-2 was independent of MEK1 and ERK2, whereas the coprecipitation of MEK1 and ERK2 with beta-arrestin-2 was significantly enhanced in the presence of overexpressed cRaf-1, suggesting that binding of cRaf-1 to beta-arrestin facilitates the assembly of a cRaf-1, MEK1, ERK2 complex. The phosphorylation of ERK2 in beta-arrestin complexes was markedly enhanced by coexpression of cRaf-1, and this effect is blocked by expression of a catalytically inactive dominant inhibitory mutant of MEK1. Stimulation with angiotensin increased the binding of both cRaf-1 and ERK2 to beta-arrestin-2, and the association of beta-arrestin-2, cRaf-1, and ERK2 with AT1aR. These data suggest that beta-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.Item Open Access Functionally active targeting domain of the beta-adrenergic receptor kinase: an inhibitor of G beta gamma-mediated stimulation of type II adenylyl cyclase.(Proc Natl Acad Sci U S A, 1994-04-26) Inglese, J; Luttrell, LM; Iñiguez-Lluhi, JA; Touhara, K; Koch, WJ; Lefkowitz, RJThe beta-adrenergic receptor kinase (beta ARK) phosphorylates its membrane-associated receptor substrates, such as the beta-adrenergic receptor, triggering events leading to receptor desensitization. beta ARK activity is markedly stimulated by the isoprenylated beta gamma subunit complex of heterotrimeric guanine nucleotide-binding proteins (G beta gamma), which translocates the kinase to the plasma membrane and thereby targets it to its receptor substrate. The amino-terminal two-thirds of beta ARK1 composes the receptor recognition and catalytic domains, while the carboxyl third contains the G beta gamma binding sequences, the targeting domain. We prepared this domain as a recombinant His6 fusion protein from Escherichia coli and found that it had both independent secondary structure and functional activity. We demonstrated the inhibitory properties of this domain against G beta gamma activation of type II adenylyl cyclase both in a reconstituted system utilizing Sf9 insect cell membranes and in a permeabilized 293 human embryonic kidney cell system. Gi alpha-mediated inhibition of adenylyl cyclase was not affected. These data suggest that this His6 fusion protein derived from the carboxyl terminus of beta ARK1 provides a specific probe for defining G beta gamma-mediated processes and for studying the structural features of a G beta gamma-binding domain.Item Open Access Mitogenic signaling via G protein-coupled receptors.(Endocr Rev, 1996-12) van Biesen, T; Luttrell, LM; Hawes, BE; Lefkowitz, RJItem Open Access Platelet-derived growth factor receptor association with Na(+)/H(+) exchanger regulatory factor potentiates receptor activity.(Mol Cell Biol, 2000-11) Maudsley, S; Zamah, AM; Rahman, N; Blitzer, JT; Luttrell, LM; Lefkowitz, RJ; Hall, RAPlatelet-derived growth factor (PDGF) is a potent mitogen for many cell types. The PDGF receptor (PDGFR) is a receptor tyrosine kinase that mediates the mitogenic effects of PDGF by binding to and/or phosphorylating a variety of intracellular signaling proteins upon PDGF-induced receptor dimerization. We show here that the Na(+)/H(+) exchanger regulatory factor (NHERF; also known as EBP50), a protein not previously known to interact with the PDGFR, binds to the PDGFR carboxyl terminus (PDGFR-CT) with high affinity via a PDZ (PSD-95/Dlg/Z0-1 homology) domain-mediated interaction and potentiates PDGFR autophosphorylation and extracellular signal-regulated kinase (ERK) activation in cells. A point-mutated version of the PDGFR, with the terminal leucine changed to alanine (L1106A), cannot bind NHERF in vitro and is markedly impaired relative to the wild-type receptor with regard to PDGF-induced autophosphorylation and activation of ERK in cells. NHERF potentiation of PDGFR signaling depends on the capacity of NHERF to oligomerize. NHERF oligomerizes in vitro when bound with PDGFR-CT, and a truncated version of the first NHERF PDZ domain that can bind PDGFR-CT but which does not oligomerize reduces PDGFR tyrosine kinase activity when transiently overexpressed in cells. PDGFR activity in cells can also be regulated in a NHERF-dependent fashion by stimulation of the beta(2)-adrenergic receptor, a known cellular binding partner for NHERF. These findings reveal that NHERF can directly bind to the PDGFR and potentiate PDGFR activity, thus elucidating both a novel mechanism by which PDGFR activity can be regulated and a new cellular role for the PDZ domain-containing adapter protein NHERF.Item Open Access Role of endocytosis in the activation of the extracellular signal-regulated kinase cascade by sequestering and nonsequestering G protein-coupled receptors.(Proc Natl Acad Sci U S A, 2000-02-15) Pierce, KL; Maudsley, S; Daaka, Y; Luttrell, LM; Lefkowitz, RJActing through a number of distinct pathways, many G protein-coupled receptors (GPCRs) activate the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) cascade. Recently, it has been shown that in some cases, clathrin-mediated endocytosis is required for GPCR activation of the ERK/MAPK cascade, whereas in others it is not. Accordingly, we compared ERK activation mediated by a GPCR that does not undergo agonist-stimulated endocytosis, the alpha(2A) adrenergic receptor (alpha(2A) AR), with ERK activation mediated by the beta(2) adrenergic receptor (beta(2) AR), which is endocytosed. Surprisingly, we found that in COS-7 cells, ERK activation by the alpha(2A) AR, like that mediated by both the beta(2) AR and the epidermal growth factor receptor (EGFR), is sensitive to mechanistically distinct inhibitors of clathrin-mediated endocytosis, including monodansylcadaverine, a mutant dynamin I, and a mutant beta-arrestin 1. Moreover, we determined that, as has been shown for many other GPCRs, both alpha(2A) and beta(2) AR-mediated ERK activation involves transactivation of the EGFR. Using confocal immunofluorescence microscopy, we found that stimulation of the beta(2) AR, the alpha(2A) AR, or the EGFR each results in internalization of a green fluorescent protein-tagged EGFR. Although beta(2) AR stimulation leads to redistribution of both the beta(2) AR and EGFR, activation of the alpha(2A) AR leads to redistribution of the EGFR but the alpha(2A) AR remains on the plasma membrane. These findings separate GPCR endocytosis from the requirement for clathrin-mediated endocytosis in EGFR transactivation-mediated ERK activation and suggest that it is the receptor tyrosine kinase or another downstream effector that must engage the endocytic machinery.