Browsing by Author "Mazurowski, Maciej A"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Unknown Classification of COVID-19 in chest radiographs: assessing the impact of imaging parameters using clinical and simulated images(Medical Imaging 2021: Computer-Aided Diagnosis, 2021-02-15) Fricks, Rafael; Abadi, Ehsan; Ria, Francesco; Samei, EhsanAs computer-aided diagnostics develop to address new challenges in medical imaging, including emerging diseases such as COVID-19, the initial development is hampered by availability of imaging data. Deep learning algorithms are particularly notorious for performance that tends to improve proportionally to the amount of available data. Simulated images, as available through advanced virtual trials, may present an alternative in data-constrained applications. We begin with our previously trained COVID-19 x-ray classification model (denoted as CVX) that leveraged additional training with existing pre-pandemic chest radiographs to improve classification performance in a set of COVID-19 chest radiographs. The CVX model achieves demonstrably better performance on clinical images compared to an equivalent model that applies standard transfer learning from ImageNet weights. The higher performing CVX model is then shown to generalize effectively to a set of simulated COVID-19 images, both quantitative comparisons of AUCs from clinical to simulated image sets, but also in a qualitative sense where saliency map patterns are consistent when compared between sets. We then stratify the classification results in simulated images to examine dependencies in imaging parameters when patient features are constant. Simulated images show promise in optimizing imaging parameters for accurate classification in data-constrained applications.Item Unknown Multi-label annotation of text reports from computed tomography of the chest, abdomen, and pelvis using deep learning.(BMC medical informatics and decision making, 2022-04) D'Anniballe, Vincent M; Tushar, Fakrul Islam; Faryna, Khrystyna; Han, Songyue; Mazurowski, Maciej A; Rubin, Geoffrey D; Lo, Joseph YBackground
There is progress to be made in building artificially intelligent systems to detect abnormalities that are not only accurate but can handle the true breadth of findings that radiologists encounter in body (chest, abdomen, and pelvis) computed tomography (CT). Currently, the major bottleneck for developing multi-disease classifiers is a lack of manually annotated data. The purpose of this work was to develop high throughput multi-label annotators for body CT reports that can be applied across a variety of abnormalities, organs, and disease states thereby mitigating the need for human annotation.Methods
We used a dictionary approach to develop rule-based algorithms (RBA) for extraction of disease labels from radiology text reports. We targeted three organ systems (lungs/pleura, liver/gallbladder, kidneys/ureters) with four diseases per system based on their prevalence in our dataset. To expand the algorithms beyond pre-defined keywords, attention-guided recurrent neural networks (RNN) were trained using the RBA-extracted labels to classify reports as being positive for one or more diseases or normal for each organ system. Alternative effects on disease classification performance were evaluated using random initialization or pre-trained embedding as well as different sizes of training datasets. The RBA was tested on a subset of 2158 manually labeled reports and performance was reported as accuracy and F-score. The RNN was tested against a test set of 48,758 reports labeled by RBA and performance was reported as area under the receiver operating characteristic curve (AUC), with 95% CIs calculated using the DeLong method.Results
Manual validation of the RBA confirmed 91-99% accuracy across the 15 different labels. Our models extracted disease labels from 261,229 radiology reports of 112,501 unique subjects. Pre-trained models outperformed random initialization across all diseases. As the training dataset size was reduced, performance was robust except for a few diseases with a relatively small number of cases. Pre-trained classification AUCs reached > 0.95 for all four disease outcomes and normality across all three organ systems.Conclusions
Our label-extracting pipeline was able to encompass a variety of cases and diseases in body CT reports by generalizing beyond strict rules with exceptional accuracy. The method described can be easily adapted to enable automated labeling of hospital-scale medical data sets for training image-based disease classifiers.