Browsing by Author "McCravy, Matthew"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Bronchoalveolar Tregs are associated with duration of mechanical ventilation in acute respiratory distress syndrome.(Journal of translational medicine, 2020-11) Norton, Dustin L; Ceppe, Agathe; Tune, Miriya K; McCravy, Matthew; Devlin, Thomas; Drummond, M Bradley; Carson, Shannon S; Vincent, Benjamin G; Hagan, Robert S; Dang, Hong; Doerschuk, Claire M; Mock, Jason RBackground
Foxp3+ regulatory T cells (Tregs) play essential roles in immune homeostasis and repair of damaged lung tissue. We hypothesized that patients whose lung injury resolves quickly, as measured by time to liberation from mechanical ventilation, have a higher percentage of Tregs amongst CD4+ T cells in either airway, bronchoalveolar lavage (BAL) or peripheral blood samples.Methods
We prospectively enrolled patients with ARDS requiring mechanical ventilation and collected serial samples, the first within 72 h of ARDS diagnosis (day 0) and the second 48-96 h later (day 3). We analyzed immune cell populations and cytokines in BAL, tracheal aspirates and peripheral blood, as well as cytokines in plasma, obtained at the time of bronchoscopy. The study cohort was divided into fast resolvers (FR; n = 8) and slow resolvers (SR; n = 5), based on the median number of days until first extubation for all participants (n = 13). The primary measure was the percentage of CD4+ T cells that were Tregs.Results
The BAL of FR contained more Tregs than SR. This finding did not extend to Tregs in tracheal aspirates or blood. BAL Tregs expressed more of the full-length FOXP3 than a splice variant missing exon 2 compared to Tregs in simultaneously obtained peripheral blood.Conclusion
Tregs are present in the bronchoalveolar space during ARDS. A greater percentage of CD4+ cells were Tregs in the BAL of FR than SR. Tregs may play a role in the resolution of ARDS, and enhancing their numbers or functions may be a therapeutic target.Item Open Access Dysregulated Metabolism in the Pathophysiology of Non-Allergic Obese Asthma.(Journal of asthma and allergy, 2021-01) McCravy, Matthew; Ingram, Jennifer L; Que, Loretta GAsthma is an obstructive airway disease that is characterized by reversible airway obstruction and is classically associated with atopic, TH2 driven inflammation. Landmark studies in the second half of the twentieth century identified eosinophils as a key mediator of inflammation and steroids, both inhaled and systemic, as a cornerstone of therapy. However, more recently other phenotypes of asthma have emerged that do not respond as well to traditional therapies. In particular, obese patients who develop asthma as adults are less likely to have eosinophilic airway inflammation and do not respond to traditional therapies. Obese patients often have metabolic comorbidities such as impaired glucose tolerance and dyslipidemias, also known as metabolic syndrome (MetS). The unified pathophysiology of metabolic syndrome is not known, however, several signaling pathways, such as the neuropeptide glucagon-like peptide-1 (GLP-1) and nitric oxide (NO) signaling have been shown to be dysregulated in MetS. These pathways are targeted by commercially available medications. This review discusses the potential roles that dysregulation of the GLP-1 and NO signaling pathways, along with arginine metabolism, play in the development of asthma in obese patients. GLP-1 receptors are found in high density in the lung and are also detectable in bronchoalveolar lavage fluid. NO has long been associated with asthma. We hypothesize that these derangements in metabolic signaling pathways underpin the asthmatic phenotype seen in obese patients with non-eosinophilic airway inflammation and poor response to established therapies. While still an active area of research, novel interventions are needed for this subset of patient who respond poorly to available asthma therapies.Item Open Access Wood smoke particle exposure in mice reduces the severity of influenza infection.(Toxicology and applied pharmacology, 2021-09) Vose, Aaron; McCravy, Matthew; Birukova, Anastasiya; Yang, Zhonghui; Hollingsworth, John W; Que, Loretta G; Tighe, Robert MElevated ambient temperatures and extreme weather events have increased the incidence of wildfires world-wide resulting in increased wood smoke particle (WSP). Epidemiologic data suggests that WSP exposure associates with exacerbations of respiratory diseases, and with increased respiratory viral infections. To assess the impact of WSP exposure on host response to viral pneumonia, we performed WSP exposures in rodents followed by infection with mouse adapted influenza (HINI-PR8). C57BL/6 male mice aged 6-8 weeks were challenged with WSP or PBS by oropharyngeal aspiration in acute (single dose) or sub-acute exposures (day 1, 3, 5, 7 and 10). Additional groups underwent sub-acute exposure followed by infection by influenza or heat-inactivated (HI) virus. Following exposures/infection, bronchoalveolar lavage (BAL) was performed to assess for total cell counts/differentials, total protein, protein carbonyls and hyaluronan. Lung tissue was assessed for viral counts by real time PCR. When compared to PBS, acute WSP exposure associated with an increase in airspace macrophages. Alternatively, sub-acute exposure resulted in a dose dependent increase in airspace neutrophils. Sub-acute WSP exposure followed by influenza infection was associated with improved respiratory viral outcomes including reduced weight loss and increased blood oxygen saturation, and decreased protein carbonyls and viral titers. Flow cytometry demonstrated dynamic changes in pulmonary macrophage and T cell subsets based on challenge with WSP and influenza. This data suggests that sub-acute WSP exposure can improve host response to acute influenza infection.