Browsing by Author "McDaniel, Jonathan R"
Results Per Page
Sort Options
Item Open Access A genetically engineered thermally responsive sustained release curcumin depot to treat neuroinflammation.(J Control Release, 2013-10-10) Sinclair, S Michael; Bhattacharyya, Jayanta; McDaniel, Jonathan R; Gooden, David M; Gopalaswamy, Ramesh; Chilkoti, Ashutosh; Setton, Lori ARadiculopathy, a painful neuroinflammation that can accompany intervertebral disc herniation, is associated with locally increased levels of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα). Systemic administration of TNF antagonists for radiculopathy in the clinic has shown mixed results, and there is growing interest in the local delivery of anti-inflammatory drugs to treat this pathology as well as similar inflammatory events of peripheral nerve injury. Curcumin, a known antagonist of TNFα in multiple cell types and tissues, was chemically modified and conjugated to a thermally responsive elastin-like polypeptide (ELP) to create an injectable depot for sustained, local delivery of curcumin to treat neuroinflammation. ELPs are biopolymers capable of thermally-triggered in situ depot formation that have been successfully employed as drug carriers and biomaterials in several applications. ELP-curcumin conjugates were shown to display high drug loading, rapidly release curcumin in vitro via degradable carbamate bonds, and retain in vitro bioactivity against TNFα-induced cytotoxicity and monocyte activation with IC50 only two-fold higher than curcumin. When injected proximal to the sciatic nerve in mice via intramuscular (i.m.) injection, ELP-curcumin conjugates underwent a thermally triggered soluble-insoluble phase transition, leading to in situ formation of a depot that released curcumin over 4days post-injection and decreased plasma AUC 7-fold.Item Open Access Assembly of Highly Asymmetric Genetically-Encoded Amphiphiles for Thermally Targeted Delivery of Therapeutics(2013) McDaniel, Jonathan RTraditional small molecule chemotherapeutics show limited effectiveness in the clinic as their poor pharmacokinetics lead to rapid clearance from circulation and their exposure to off-target tissues results in dose-limiting toxicity. The objective of this dissertation is to exploit a class of recombinant chimeric polypeptides (CPs) to actively target drugs to tumors as conjugation to macromolecular carriers has demonstrated improved efficacy by increasing plasma retention time, reducing uptake by healthy tissues, and enhancing tumor accumulation by exploiting the leaky vasculature and impaired lymphatic drainage characteristic of solid tumors. CPs consist of two principal components: (1) a thermally responsive elastin-like polypeptide (ELP) that displays a soluble-to-aggregate phase transition above a characteristic transition temperature (Tt); and (2) a cysteine-rich peptide fused to one end of the ELP to which small molecule therapeutics can be covalently attached (the conjugation domain). This work describes the development of CP drug-loaded nanoparticles that can be targeted to solid tumors by the external application of mild regional hyperthermia (39-43°C).
Highly repetitive ELP polymers were assembled by Plasmid Reconstruction Recursive Directional Ligation (PRe-RDL), in which two halves of a parent plasmid, each containing a copy of an oligomer, were ligated together to dimerize the oligomer and reconstitute the functional plasmid. Chimeric polypeptides were constructed by fusing the ELP sequence to a (CGG)8 conjugation domain, expressed in Escherichia coli, and loaded with small molecule hydrophobes through site specific attachment to the conjugation domain. Drug attachment induced the assembly of nanoparticles that retained the thermal responsiveness of the parent ELP in that they experienced a phase transition from soluble nanoparticles to an aggregated phase above their Tt. Importantly, the Tt of these nanoparticles was near-independent of the CP concentration and the structure of the conjugated molecule as long as it displayed an octanol-water distribution coefficient (LogD) > 1.5.
A series of CP nanoparticles with varying ratios of alanine and valine in the guest residue position was used to develop a quantitative model that described the CP transition temperature in terms of three variables - sequence, chain length, and concentration - and the model was used to identify CPs of varying molecular weights that displayed transition temperatures between 39°C and 43°C. A murine dorsal skin fold window chamber model using a human tumor xenograft was used to validate that only the thermoresponsive CP nanoparticles (and not the controls) exhibited a micelle-to-aggregate phase transition between 39-43°C in vivo. Furthermore, quantitative analysis of the biodistribution profile demonstrated that accumulation of these thermoresponsive CP nanoparticles was significantly enhanced by applying heat in a cyclical manner. It is hoped that this work will provide a helpful resource for the use of thermoresponsive CP nanoparticles in a variety of biomedical applications.
Item Open Access Chain stiffness of elastin-like polypeptides.(Biomacromolecules, 2010-11-08) Fluegel, Sabine; Fischer, Karl; McDaniel, Jonathan R; Chilkoti, Ashutosh; Schmidt, ManfredItem Open Access Recursive directional ligation by plasmid reconstruction allows rapid and seamless cloning of oligomeric genes.(Biomacromolecules, 2010-04-12) McDaniel, Jonathan R; Mackay, J Andrew; Quiroz, Felipe García; Chilkoti, AshutoshThis paper reports a new strategy, recursive directional ligation by plasmid reconstruction (PRe-RDL), to rapidly clone highly repetitive polypeptides of any sequence and specified length over a large range of molecular weights. In a single cycle of PRe-RDL, two halves of a parent plasmid, each containing a copy of an oligomer, are ligated together, thereby dimerizing the oligomer and reconstituting a functional plasmid. This process is carried out recursively to assemble an oligomeric gene with the desired number of repeats. PRe-RDL has several unique features that stem from the use of type IIs restriction endonucleases: first, PRe-RDL is a seamless cloning method that leaves no extraneous nucleotides at the ligation junction. Because it uses type IIs endonucleases to ligate the two halves of the plasmid, PRe-RDL also addresses the major limitation of RDL in that it abolishes any restriction on the gene sequence that can be oligomerized. The reconstitution of a functional plasmid only upon successful ligation in PRe-RDL also addresses two other limitations of RDL: the significant background from self-ligation of the vector observed in RDL, and the decreased efficiency of ligation due to nonproductive circularization of the insert. PRe-RDL can also be used to assemble genes that encode different sequences in a predetermined order to encode block copolymers or append leader and trailer peptide sequences to the oligomerized gene.