Browsing by Author "McMahon, Tim J"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Endothelial LAT1 (SLC7A5) Mediates S-Nitrosothiol Import and Modulates Respiratory Sequelae of Red Blood Cell Transfusion In Vivo.(Thrombosis and haemostasis, 2024-03) Zhu, Hongmei; Auten, Richard L; Whorton, Augustus Richard; Mason, Stanley Nicholas; Bock, Cheryl B; Kucera, Gary T; Kelleher, Zachary T; Vose, Aaron T; McMahon, Tim JBackground
Increased adhesivity of red blood cells (RBCs) to endothelial cells (ECs) may contribute to organ dysfunction in malaria, sickle cell disease, and diabetes. RBCs normally export nitric oxide (NO)-derived vascular signals, facilitating blood flow. S-nitrosothiols (SNOs) are thiol adducts formed in RBCs from precursor NO upon the oxygenation-linked allosteric transition in hemoglobin. RBCs export these vasoregulatory SNOs on demand, thereby regulating regional blood flow and preventing RBC-EC adhesion, and the large (system L) neutral amino acid transporter 1 (LAT1; SLC7A5) appears to mediate SNO export by RBCs.Methods
To determine the role of LAT1-mediated SNO import by ECs generally and of LAT1-mediated SNO import by ECs in RBC SNO-dependent modulation of RBC sequestration and blood oxygenation in vivo, we engineered LAT1fl/fl; Cdh5-Cre+ mice, in which the putative SNO transporter LAT1 can be inducibly depleted (knocked down, KD) specifically in ECs ("LAT1ECKD").Results
We show that LAT1 in mouse lung ECs mediates cellular SNO uptake. ECs from LAT1ECKD mice (tamoxifen-induced LAT1fl/fl; Cdh5-Cre+) import SNOs poorly ex vivo compared with ECs from wild-type (tamoxifen-treated LAT1fl/fl; Cdh5-Cre-) mice. In vivo, endothelial depletion of LAT1 increased RBC sequestration in the lung and decreased blood oxygenation after RBC transfusion.Conclusion
This is the first study showing a role for SNO transport by LAT1 in ECs in a genetic mouse model. We provide the first direct evidence for the coordination of RBC SNO export with EC SNO import via LAT1. SNO flux via LAT1 modulates RBC-EC sequestration in lungs after transfusion, and its disruption impairs blood oxygenation by the lung.Item Open Access Treatment-related biomarkers in pulmonary hypertension patients on oral therapies.(Respiratory research, 2020-11-19) Swaminathan, Aparna C; Zhu, Hongmei; Tapson, Victor; Lokhnygina, Yuliya; Poms, Abby; Kelleher, Zach; Gaspard, Elijah; Kennedy, Karla; Fee, Brian E; Fortin, Terry; Mason, S Nicholas; Parikh, Kishan; McMahon, Tim JBackground
Multiple classes of oral therapy are available for the treatment of pulmonary arterial hypertension (PAH), but there is little to guide clinicians in choosing a specific regimen or therapeutic class. We aimed to investigate whether treatment-relevant blood biomarkers can predict therapy response in prevalent PAH patients.Methods
This prospective cohort study longitudinally assessed biomarkers along the endothelin-1 (ET-1) and nitric oxide (cGMP, ADMA, SDMA, nitrite, and S-nitrosohemoglobin) pathways along with the cGMP/NT-proBNP ratio over 12 months in patients with WHO Group 1 PAH on oral PAH-specific therapies. The relationship between biomarkers and 6MWD at the same and future visits was examined using mixed linear regression models adjusted for age. As cGMP can be elevated when NT-proBNP is elevated, we also tested the relationship between 6MWD and the cGMP/NT-pro BNP ratio. Patients with PAH with concomitant heart or lung disease or chronic thromboembolic pulmonary hypertension (CTEPH) were included in a sensitivity analysis.Results
The study cohort included 58 patients with PAH treated with either an endothelin receptor antagonist (27.6%), phosphodiesterase-5 inhibitor (25.9%) or a combination of the two (43.1%). Among biomarkers along the current therapeutic pathways, ET-1 and the cGMP/NT-proBNP ratio associated with same visit 6MWD (p = 0.02 and p = 0.03 respectively), and ET-1 predicted future 6MWD (p = 0.02). ET-1 (p = 0.01) and cGMP/NT-proBNP ratio (p = 0.04) also predicted future 6MWD in the larger cohort (n = 108) of PAH patients with concomitant left heart disease (n = 17), lung disease (n = 20), or CTEPH (n = 13). Finally, in the larger cohort, SDMA associated with 6MWD at the same visit (p = 0.01) in all subgroups and ADMA associated with 6MWD in PAH patients with concomitant lung disease (p = 0.03) and PAH patients on ERA therapy (p = 0.01).Conclusions
ET-1, cGMP/NTproBNP ratio, and dimethylarginines ADMA and SDMA are mediators along pathways targeted by oral PAH therapies that associate with or predict 6MWD.Item Open Access Treatment-related biomarkers in pulmonary hypertension.(Am J Respir Cell Mol Biol, 2015-06) Swaminathan, Aparna C; Dusek, Alex C; McMahon, Tim JSignificant advances in the treatment of pulmonary arterial hypertension (PAH) over the last two decades have led to the introduction of multiple classes of oral therapy, but the disease remains devastating for many patients. Disease progression, in spite of oral monotherapy, is a major problem, and alternative therapy, such as infusion of prostacyclins, is cumbersome and carries considerable potential morbidity. Use of combination oral therapy, including drugs from both the endothelin receptor antagonist and phosphodiesterase-5 inhibitor classes, has increased, and there is some evidence to support this approach. Given the multiple options now available in pulmonary hypertension (PH) therapy, biomarkers to guide treatment decisions could be helpful. Here, we review the evidence for and against the clinical use of molecular biomarkers relevant to PH pathogenesis, emphasizing assayable markers that may also inform more rational selection of agents that influence pathways targeted by treatment. We emphasize the interactive nature of changes in mediators and messengers, such as endothelin-1, prostacyclin, brain natriuretic peptide (which has demonstrated biomarker utility), nitric oxide derivatives, and cyclic guanosine monophosphate, which play important roles in processes central to progression of PAH, such as vascular remodeling, vasoconstriction, and maladaptive right ventricular changes, and are relevant to its therapy. Accordingly, we propose that the identification and use of a molecular biomarker panel that assays these molecules in parallel and serially might, if validated, better inform unique patient phenotypes, prognosis, and the rational selection and titration of combination oral and other therapy in individual patients with PH/PAH.