Browsing by Author "McMichael, Andrew J"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Common genetic variation and the control of HIV-1 in humans.(PLoS Genet, 2009-12) Fellay, Jacques; Ge, Dongliang; Shianna, Kevin V; Colombo, Sara; Ledergerber, Bruno; Cirulli, Elizabeth T; Urban, Thomas J; Zhang, Kunlin; Gumbs, Curtis E; Smith, Jason P; Castagna, Antonella; Cozzi-Lepri, Alessandro; De Luca, Andrea; Easterbrook, Philippa; Günthard, Huldrych F; Mallal, Simon; Mussini, Cristina; Dalmau, Judith; Martinez-Picado, Javier; Miro, José M; Obel, Niels; Wolinsky, Steven M; Martinson, Jeremy J; Detels, Roger; Margolick, Joseph B; Jacobson, Lisa P; Descombes, Patrick; Antonarakis, Stylianos E; Beckmann, Jacques S; O'Brien, Stephen J; Letvin, Norman L; McMichael, Andrew J; Haynes, Barton F; Carrington, Mary; Feng, Sheng; Telenti, Amalio; Goldstein, David B; NIAID Center for HIV/AIDS Vaccine Immunology (CHAVI)To extend the understanding of host genetic determinants of HIV-1 control, we performed a genome-wide association study in a cohort of 2,554 infected Caucasian subjects. The study was powered to detect common genetic variants explaining down to 1.3% of the variability in viral load at set point. We provide overwhelming confirmation of three associations previously reported in a genome-wide study and show further independent effects of both common and rare variants in the Major Histocompatibility Complex region (MHC). We also examined the polymorphisms reported in previous candidate gene studies and fail to support a role for any variant outside of the MHC or the chemokine receptor cluster on chromosome 3. In addition, we evaluated functional variants, copy-number polymorphisms, epistatic interactions, and biological pathways. This study thus represents a comprehensive assessment of common human genetic variation in HIV-1 control in Caucasians.Item Open Access Elevation of intact and proteolytic fragments of acute phase proteins constitutes the earliest systemic antiviral response in HIV-1 infection.(PLoS pathogens, 2010) Kramer, Holger B; Lavender, Kerry J; Qin, Li; Stacey, Andrea R; Liu, Michael KP; di Gleria, Katalin; Simmons, Alison; Gasper-Smith, Nancy; Haynes, Barton F; McMichael, Andrew J; Borrow, Persephone; Kessler, Benedikt MThe earliest immune responses activated in acute human immunodeficiency virus type 1 infection (AHI) exert a critical influence on subsequent virus spread or containment. During this time frame, components of the innate immune system such as macrophages and DCs, NK cells, beta-defensins, complement and other anti-microbial factors, which have all been implicated in modulating HIV infection, may play particularly important roles. A proteomics-based screen was performed on a cohort from whom samples were available at time points prior to the earliest positive HIV detection. The ability of selected factors found to be elevated in the plasma during AHI to inhibit HIV-1 replication was analyzed using in vitro PBMC and DC infection models. Analysis of unique plasma donor panels spanning the eclipse and viral expansion phases revealed very early alterations in plasma proteins in AHI. Induction of acute phase protein serum amyloid A (A-SAA) occurred as early as 5-7 days prior to the first detection of plasma viral RNA, considerably prior to any elevation in systemic cytokine levels. Furthermore, a proteolytic fragment of alpha-1-antitrypsin (AAT), termed virus inhibitory peptide (VIRIP), was observed in plasma coincident with viremia. Both A-SAA and VIRIP have anti-viral activity in vitro and quantitation of their plasma levels indicated that circulating concentrations are likely to be within the range of their inhibitory activity. Our results provide evidence for a first wave of host anti-viral defense occurring in the eclipse phase of AHI prior to systemic activation of other immune responses. Insights gained into the mechanism of action of acute-phase reactants and other innate molecules against HIV and how they are induced could be exploited for the future development of more efficient prophylactic vaccine strategies.Item Open Access Preexisting compensatory amino acids compromise fitness costs of a HIV-1 T cell escape mutation.(Retrovirology, 2014-11-19) Liu, Donglai; Zuo, Tao; Hora, Bhavna; Song, Hongshuo; Kong, Wei; Yu, Xianghui; Goonetilleke, Nilu; Bhattacharya, Tanmoy; Perelson, Alan S; Haynes, Barton F; McMichael, Andrew J; Gao, FengBACKGROUND: Fitness costs and slower disease progression are associated with a cytolytic T lymphocyte (CTL) escape mutation T242N in Gag in HIV-1-infected individuals carrying HLA-B*57/5801 alleles. However, the impact of different context in diverse HIV-1 strains on the fitness costs due to the T242N mutation has not been well characterized. To better understand the extent of fitness costs of the T242N mutation and the repair of fitness loss through compensatory amino acids, we investigated its fitness impact in different transmitted/founder (T/F) viruses. RESULTS: The T242N mutation resulted in various levels of fitness loss in four different T/F viruses. However, the fitness costs were significantly compromised by preexisting compensatory amino acids in (Isoleucine at position 247) or outside (glutamine at position 219) the CTL epitope. Moreover, the transmitted T242N escape mutant in subject CH131 was as fit as the revertant N242T mutant and the elimination of the compensatory amino acid I247 in the T/F viral genome resulted in significant fitness cost, suggesting the fitness loss caused by the T242N mutation had been fully repaired in the donor at transmission. Analysis of the global circulating HIV-1 sequences in the Los Alamos HIV Sequence Database showed a high prevalence of compensatory amino acids for the T242N mutation and other T cell escape mutations. CONCLUSIONS: Our results show that the preexisting compensatory amino acids in the majority of circulating HIV-1 strains could significantly compromise the fitness loss due to CTL escape mutations and thus increase challenges for T cell based vaccines.Item Restricted Transmission of single HIV-1 genomes and dynamics of early immune escape revealed by ultra-deep sequencing.(PLoS One, 2010-08-20) Fischer, Will; Ganusov, Vitaly V; Giorgi, Elena E; Hraber, Peter T; Keele, Brandon F; Leitner, Thomas; Han, Cliff S; Gleasner, Cheryl D; Green, Lance; Lo, Chien-Chi; Nag, Ambarish; Wallstrom, Timothy C; Wang, Shuyi; McMichael, Andrew J; Haynes, Barton F; Hahn, Beatrice H; Perelson, Alan S; Borrow, Persephone; Shaw, George M; Bhattacharya, Tanmoy; Korber, Bette TWe used ultra-deep sequencing to obtain tens of thousands of HIV-1 sequences from regions targeted by CD8+ T lymphocytes from longitudinal samples from three acutely infected subjects, and modeled viral evolution during the critical first weeks of infection. Previous studies suggested that a single virus established productive infection, but these conclusions were tempered because of limited sampling; now, we have greatly increased our confidence in this observation through modeling the observed earliest sample diversity based on vastly more extensive sampling. Conventional sequencing of HIV-1 from acute/early infection has shown different patterns of escape at different epitopes; we investigated the earliest escapes in exquisite detail. Over 3-6 weeks, ultradeep sequencing revealed that the virus explored an extraordinary array of potential escape routes in the process of evading the earliest CD8 T-lymphocyte responses--using 454 sequencing, we identified over 50 variant forms of each targeted epitope during early immune escape, while only 2-7 variants were detected in the same samples via conventional sequencing. In contrast to the diversity seen within epitopes, non-epitope regions, including the Envelope V3 region, which was sequenced as a control in each subject, displayed very low levels of variation. In early infection, in the regions sequenced, the consensus forms did not have a fitness advantage large enough to trigger reversion to consensus amino acids in the absence of immune pressure. In one subject, a genetic bottleneck was observed, with extensive diversity at the second time point narrowing to two dominant escape forms by the third time point, all within two months of infection. Traces of immune escape were observed in the earliest samples, suggesting that immune pressure is present and effective earlier than previously reported; quantifying the loss rate of the founder virus suggests a direct role for CD8 T-lymphocyte responses in viral containment after peak viremia. Dramatic shifts in the frequencies of epitope variants during the first weeks of infection revealed a complex interplay between viral fitness and immune escape.