Browsing by Author "Mebrahtu, H"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Pb-Graphene-Pb josephson junctions: Characterization in magnetic field(IEEE Transactions on Applied Superconductivity, 2012-06-14) Borzenets, IV; Coskun, UC; Mebrahtu, H; Finkelstein, GWe fabricate superconductor-graphene-superconductor Josephson junctions with superconducting regions made of lead (Pb). The critical current through graphene may be modulated by the external magnetic field; the resulting Fraunhofer interference pattern shows several periods of oscillations, suggesting that the junction is uniform. Deviations from the perfect Fraunhofer pattern are observed, and their cause is explained by a simulation that takes into account the sample design. © 2002-2011 IEEE.Item Open Access Two-stage Kondo effect and Kondo-box level spectroscopy in a carbon nanotube(Physical Review B - Condensed Matter and Materials Physics, 2010-10-18) Bomze, Y; Borzenets, I; Mebrahtu, H; Makarovski, A; Baranger, HU; Finkelstein, GThe concept of the "Kondo box" describes a single spin, antiferromagnetically coupled to a quantum dot with a finite level spacing. Here, a Kondo box is formed in a carbon nanotube interacting with a localized electron. We investigate the spins of its first few eigenstates and compare them to a recent theory. In an "open" Kondo-box, strongly coupled to the leads, we observe a nonmonotonic temperature dependence of the nanotube conductance, which results from a competition between the Kondo-box singlet and the "conventional" Kondo state that couples the nanotube to the leads. © 2010 The American Physical Society.Item Open Access Universal Nonequilibrium I-V Curve at an Interacting Impurity Quantum Critical Point(arXiv, 2016-09) Zhang, G; Chung, C-H; Ke, CT; Lin, C-Y; Mebrahtu, H; Smirnov, AI; Finkelstein, G; Baranger, HUThe nonlinear I-V curve at an interacting quantum critical point (QCP) is typically out of reach theoretically. Here, however, we provide an analytical calculation of the I-V curve at a QCP under nonequilibrium conditions and, furthermore, present experimental results to which the theory is compared. The system is a quantum dot coupled to resistive leads: a spinless resonant level interacting with an ohmic electromagnetic environment. A two channel Kondo like QCP occurs when the level is on resonance and symmetrically coupled to the leads. Though similar to a resonant level in a Luttinger liquid, a key difference enables us to obtain the current at finite temperature and bias: because there are modes that do not initially couple to the environment, an analysis in terms of weak backscattering of non-interacting fermions coupled to a modified environment is possible. Drawing on dynamical Coulomb blockade theory, we then obtain an analytical expression for the nonlinear I-V curve. The agreement between our theoretical and experimental results is remarkable.