Browsing by Author "Melander, Christian"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access ¹H, ¹³C, and ¹⁵N resonance assignments and secondary structure prediction of the full-length transition state regulator AbrB from Bacillus anthracis.(Biomolecular NMR assignments, 2012-04) Olson, Andrew L; Bobay, Benjamin G; Melander, Christian; Cavanagh, JohnThe AbrB protein is a transcription factor that regulates the expression of numerous essential genes during the cells transition phase state. AbrB from Bacillus anthracis is, nototriously, the principal protein responsible for anthrax toxin gene expression and is highly homologous to the much-studied AbrB protein from Bacillus subtilis having 85% sequence identity and the ability to regulate the same target promoters. Here we report backbone and sidechain resonance assignments and secondary structure prediction for the full-length AbrB protein from B. anthracis.Item Open Access Identification of BfmR, a response regulator involved in biofilm development, as a target for a 2-Aminoimidazole-based antibiofilm agent.(Biochemistry, 2012-12) Thompson, Richele J; Bobay, Benjamin G; Stowe, Sean D; Olson, Andrew L; Peng, Lingling; Su, Zhaoming; Actis, Luis A; Melander, Christian; Cavanagh, John2-Aminoimidazoles (2AIs) have been documented to disrupt bacterial protection mechanisms, including biofilm formation and genetically encoded antibiotic resistance traits. Using Acinetobacter baumannii, we provide initial insight into the mechanism of action of a 2AI-based antibiofilm agent. Confocal microscopy confirmed that the 2AI is cell permeable, while pull-down assays identified BfmR, a response regulator that is the master controller of biofilm formation, as a target for this compound. Binding assays demonstrated specificity of the 2AI for response regulators, while computational docking provided models for 2AI-BfmR interactions. The 2AI compound studied here represents a unique small molecule scaffold that targets bacterial response regulators.Item Open Access Structure of the Francisella response regulator QseB receiver domain, and characterization of QseB inhibition by antibiofilm 2-aminoimidazole-based compounds.(Molecular microbiology, 2017-10) Milton, Morgan E; Allen, C Leigh; Feldmann, Erik A; Bobay, Benjamin G; Jung, David K; Stephens, Matthew D; Melander, Roberta J; Theisen, Kelly E; Zeng, Daina; Thompson, Richele J; Melander, Christian; Cavanagh, JohnWith antibiotic resistance increasing at alarming rates, targets for new antimicrobial therapies must be identified. A particularly promising target is the bacterial two-component system. Two-component systems allow bacteria to detect, evaluate and protect themselves against changes in the environment, such as exposure to antibiotics and also to trigger production of virulence factors. Drugs that target the response regulator portion of two-component systems represent a potent new approach so far unexploited. Here, we focus efforts on the highly virulent bacterium Francisella tularensis tularensis. Francisella contains only three response regulators, making it an ideal system to study. In this study, we initially present the structure of the N-terminal domain of QseB, the response regulator responsible for biofilm formation. Subsequently, using binding assays, computational docking and cellular studies, we show that QseB interacts with2-aminoimidazole based compounds that impede its function. This information will assist in tailoring compounds to act as adjuvants that will enhance the effect of antibiotics.