Browsing by Author "Mello, CV"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Behaviourally driven gene expression reveals song nuclei in hummingbird brain.(Nature, 2000-08-10) Jarvis, ED; Ribeiro, S; da Silva, ML; Ventura, D; Vielliard, J; Mello, CVHummingbirds have developed a wealth of intriguing features, such as backwards flight, ultraviolet vision, extremely high metabolic rates, nocturnal hibernation, high brain-to-body size ratio and a remarkable species-specific diversity of vocalizations. Like humans, they have also developed the rare trait of vocal learning, this being the ability to acquire vocalizations through imitation rather than instinct. Here we show, using behaviourally driven gene expression in freely ranging tropical animals, that the forebrain of hummingbirds contains seven discrete structures that are active during singing, providing the first anatomical and functional demonstration of vocal nuclei in hummingbirds. These structures are strikingly similar to seven forebrain regions that are involved in vocal learning and production in songbirds and parrots--the only other avian orders known to be vocal learners. This similarity is surprising, as songbirds, parrots and hummingbirds are thought to have evolved vocal learning and associated brain structures independently, and it indicates that strong constraints may influence the evolution of forebrain vocal nuclei.Item Open Access Brain gene regulation by territorial singing behavior in freely ranging songbirds.(Neuroreport, 1997-05-27) Jarvis, ED; Schwabl, H; Ribeiro, S; Mello, CVTo investigate the ecological relevance of brain gene regulation associated with singing behavior in songbirds, we challenged freely ranging song sparrows with conspecific song playbacks within their breeding territories. Males responded by approaching the speaker, searching for an intruder and actively singing. In situ hybridization of brain sections revealed significantly higher expression of the transcriptional regulator ZENK in challenged birds than in unstimulated controls in several auditory structures and song control nuclei. We conclude that singing behavior in the context of territorial defense is associated with gene regulation in brain centers that control song perception and production, and that behaviorally regulated gene expression can be used to investigate brain areas involved in the natural behaviors of freely ranging animals.Item Open Access Molecular mapping of brain areas involved in parrot vocal communication.(J Comp Neurol, 2000-03-27) Jarvis, ED; Mello, CVAuditory and vocal regulation of gene expression occurs in separate discrete regions of the songbird brain. Here we demonstrate that regulated gene expression also occurs during vocal communication in a parrot, belonging to an order whose ability to learn vocalizations is thought to have evolved independently of songbirds. Adult male budgerigars (Melopsittacus undulatus) were stimulated to vocalize with playbacks of conspecific vocalizations (warbles), and their brains were analyzed for expression of the transcriptional regulator ZENK. The results showed that there was distinct separation of brain areas that had hearing- or vocalizing-induced ZENK expression. Hearing warbles resulted in ZENK induction in large parts of the caudal medial forebrain and in 1 midbrain region, with a pattern highly reminiscent of that observed in songbirds. Vocalizing resulted in ZENK induction in nine brain structures, seven restricted to the lateral and anterior telencephalon, one in the thalamus, and one in the midbrain, with a pattern partially reminiscent of that observed in songbirds. Five of the telencephalic structures had been previously described as part of the budgerigar vocal control pathway. However, functional boundaries defined by the gene expression patterns for some of these structures were much larger and different in shape than previously reported anatomical boundaries. Our results provide the first functional demonstration of brain areas involved in vocalizing and auditory processing of conspecific sounds in budgerigars. They also indicate that, whether or not vocal learning evolved independently, some of the gene regulatory mechanisms that accompany learned vocal communication are similar in songbirds and parrots.Item Open Access Site-specific retinoic acid production in the brain of adult songbirds.(Neuron, 2000-08) Denisenko-Nehrbass, NI; Jarvis, E; Scharff, C; Nottebohm, F; Mello, CVThe song system of songbirds, a set of brain nuclei necessary for song learning and production, has distinctive morphological and functional properties. Utilizing differential display, we searched for molecular components involved in song system regulation. We identified a cDNA (zRalDH) that encodes a class 1 aldehyde dehydrogenase. zRalDH was highly expressed in various song nuclei and synthesized retinoic acid efficiently. Brain areas expressing zRalDH generated retinoic acid. Within song nucleus HVC, only projection neurons not undergoing adult neurogenesis expressed zRalDH. Blocking zRalDH activity in the HVC of juveniles interfered with normal song development. Our results provide conclusive evidence for localized retinoic acid synthesis in an adult vertebrate brain and indicate that the retinoic acid-generating system plays a significant role in the maturation of a learned behavior.