Browsing by Author "Meyer, Mathias"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access CT Radiomic Features of Superior Mesenteric Artery Involvement in Pancreatic Ductal Adenocarcinoma: A Pilot Study.(Radiology, 2021-09-07) Rigiroli, Francesca; Hoye, Jocelyn; Lerebours, Reginald; Lafata, Kyle J; Li, Cai; Meyer, Mathias; Lyu, Peijie; Ding, Yuqin; Schwartz, Fides R; Mettu, Niharika B; Zani, Sabino; Luo, Sheng; Morgan, Desiree E; Samei, Ehsan; Marin, DanieleBackground Current imaging methods for prediction of complete margin resection (R0) in patients with pancreatic ductal adenocarcinoma (PDAC) are not reliable. Purpose To investigate whether tumor-related and perivascular CT radiomic features improve preoperative assessment of arterial involvement in patients with surgically proven PDAC. Materials and Methods This retrospective study included consecutive patients with PDAC who underwent surgery after preoperative CT between 2012 and 2019. A three-dimensional segmentation of PDAC and perivascular tissue surrounding the superior mesenteric artery (SMA) was performed on preoperative CT images with radiomic features extracted to characterize morphology, intensity, texture, and task-based spatial information. The reference standard was the pathologic SMA margin status of the surgical sample: SMA involved (tumor cells ≤1 mm from margin) versus SMA not involved (tumor cells >1 mm from margin). The preoperative assessment of SMA involvement by a fellowship-trained radiologist in multidisciplinary consensus was the comparison. High reproducibility (intraclass correlation coefficient, 0.7) and the Kolmogorov-Smirnov test were used to select features included in the logistic regression model. Results A total of 194 patients (median age, 66 years; interquartile range, 60-71 years; age range, 36-85 years; 99 men) were evaluated. Aside from surgery, 148 patients underwent neoadjuvant therapy. A total of 141 patients' samples did not involve SMA, whereas 53 involved SMA. A total of 1695 CT radiomic features were extracted. The model with five features (maximum hugging angle, maximum diameter, logarithm robust mean absolute deviation, minimum distance, square gray level co-occurrence matrix correlation) showed a better performance compared with the radiologist assessment (model vs radiologist area under the curve, 0.71 [95% CI: 0.62, 0.79] vs 0.54 [95% CI: 0.50, 0.59]; P < .001). The model showed a sensitivity of 62% (33 of 53 patients) (95% CI: 51, 77) and a specificity of 77% (108 of 141 patients) (95% CI: 60, 84). Conclusion A model based on tumor-related and perivascular CT radiomic features improved the detection of superior mesenteric artery involvement in patients with pancreatic ductal adenocarcinoma. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Do and Kambadakone in this issue.Item Open Access Validation of algorithmic CT image quality metrics with preferences of radiologists(MEDICAL PHYSICS, 2019-11-01) Cheng, Yuan; Abadi, Ehsan; Smith, Taylor Brunton; Ria, Francesco; Meyer, Mathias; Marin, Daniele; Samei, EhsanItem Open Access Validation of Algorithmic CT Image Quality Metrics with Preferences of Radiologists.(Medical physics, 2019-08-29) Cheng, Yuan; Abadi, Ehsan; Smith, Taylor Brunton; Ria, Francesco; Meyer, Mathias; Marin, Daniele; Samei, EhsanPURPOSE:Automated assessment of perceptual image quality on clinical Computed Tomography (CT) data by computer algorithms has the potential to greatly facilitate data-driven monitoring and optimization of CT image acquisition protocols. The application of these techniques in clinical operation requires the knowledge of how the output of the computer algorithms corresponds to clinical expectations. This study addressed the need to validate algorithmic image quality measurements on clinical CT images with preferences of radiologists and determine the clinically acceptable range of algorithmic measurements for abdominal CT examinations. MATERIALS AND METHODS:Algorithmic measurements of image quality metrics (organ HU, noise magnitude, and clarity) were performed on a clinical CT image dataset with supplemental measures of noise power spectrum from phantom images using techniques developed previously. The algorithmic measurements were compared to clinical expectations of image quality in an observer study with seven radiologists. Sets of CT liver images were selected from the dataset where images in the same set varied in terms of one metric at a time. These sets of images were shown via a web interface to one observer at a time. First, the observer rank ordered the CT images in a set according to his/her preference for the varying metric. The observer then selected his/her preferred acceptable range of the metric within the ranked images. The agreement between algorithmic and observer rankings of image quality were investigated and the clinically acceptable image quality in terms of algorithmic measurements were determined. RESULTS:The overall rank order agreements between algorithmic and observer assessments were 0.90, 0.98, and 1.00 for noise magnitude, liver parenchyma HU, and clarity, respectively. The results indicate a strong agreement between the algorithmic and observer assessments of image quality. Clinically acceptable thresholds (median) of algorithmic metric values were (17.8, 32.6) HU for noise magnitude, (92.1, 131.9) for liver parenchyma HU, and (0.47, 0.52) for clarity. CONCLUSIONS:The observer study results indicated that these algorithms can robustly assess the perceptual quality of clinical CT images in an automated fashion. Clinically acceptable ranges of algorithmic measurements were determined. The correspondence of these image quality assessment algorithms to clinical expectations paves the way towards establishing diagnostic reference levels in terms of clinically acceptable perceptual image quality and data-driven optimization of CT image acquisition protocols.