Browsing by Author "Miao, Yi"
- Results Per Page
- Sort Options
Item Open Access Dysregulation of Cell Survival in Diffuse Large B Cell Lymphoma: Mechanisms and Therapeutic Targets.(Frontiers in Oncology, 2019-01) Miao, Yi; Medeiros, L Jeffrey; Xu-Monette, Zijun Y; Li, Jianyong; Young, Ken HDiffuse large B cell lymphoma (DLBCL) is the most common type of lymphoma worldwide, representing 30-40% of non-Hodgkin lymphomas, and is clinically aggressive. Although more than half of patients with DLBCL are cured by using standard first-line immunochemotherapy, the remaining patients are refractory to the first-line therapy or relapse after complete remission and these patients require novel therapeutic approaches. Understanding the pathogenesis of DLBCL is essential for identifying therapeutic targets to tackle this disease. Cell survival dysregulation, a hallmark of cancer, is a characteristic feature of DLBCL. Intrinsic signaling aberrations, tumor microenvironment dysfunction, and viral factors can all contribute to the cell survival dysregulation in DLBCL. In recent years, several novel drugs that target abnormal cell survival pathways, have been developed and tested in clinical trials of patients with DLBCL. In this review, we discuss cell survival dysregulation, the underlying mechanisms, and how to target abnormal cell survival therapeutically in DLBCL patients.Item Open Access Genetic alterations and their clinical implications in DLBCL(Nature Reviews Clinical Oncology, 2019-10) Miao, Yi; Medeiros, L Jeffrey; Li, Yong; Li, Jianyong; Young, Ken HItem Open Access PD-1/PD-L1 expression and interaction by automated quantitative immunofluorescent analysis show adverse prognostic impact in patients with diffuse large B-cell lymphoma having T-cell infiltration: a study from the International DLBCL Consortium Program.(Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc, 2019-06) Li, Ling; Sun, Ruifang; Miao, Yi; Tran, Thai; Adams, Lisa; Roscoe, Nathan; Xu, Bing; Manyam, Ganiraju C; Tan, Xiaohong; Zhang, Hongwei; Xiao, Min; Tzankov, Alexandar; Visco, Carlo; Dybkaer, Karen; Bhagat, Govind; Tam, Wayne; Hsi, Eric D; van Krieken, J Han; You, Hua; Huh, Jooryung; Ponzoni, Maurilio; Ferreri, Andrés JM; Møller, Michael B; Piris, Miguel A; Zhang, Mingzhi; Winter, Jane N; Medeiros, L Jeffrey; Rassidakis, George Z; Vaupel, Christine A; Li, Yong; Dakappagari, Naveen; Xu-Monette, Zijun Y; Young, Ken HProgrammed cell death protein 1/programmed cell death protein ligand1 (PD-1/PD-L1) interaction is an important immune checkpoint targeted by anti-PD-1/PD-L1 immunotherapies. However, the observed prognostic significance of PD-1/PD-L1 expression in diffuse large B-cell lymphoma treated with the standard of care has been inconsistent and even contradictory. To clarify the prognostic role of PD-1/PD-L1 expression and interaction in diffuse large B-cell lymphoma, in this study we used 3-marker fluorescent multiplex immunohistochemistry and Automated Quantitative Analysis Technology to assess the CD3+, PD-L1+, and PD-1+CD3+ expression in diagnostic samples and PD-1/PD-L1 interaction as indicated by presence of PD-1+CD3+ cells in the vicinity of PD-L1+ cells, analyzed their prognostic effects in 414 patients with de novo diffuse large B-cell lymphoma, and examined whether PD-1/PD-L1 interaction is required for the prognostic role of PD-1+/PD-L1+ expression. We found that low T-cell tissue cellularity, tissue PD-L1+ expression (irrespective of cell types), PD-1+CD3+ expression, and PD-1/PD-L1 interaction showed hierarchical adverse prognostic effects in the study cohort. PD-1/PD-L1 interaction showed higher sensitivity and specificity than PD-1+ and PD-L1+ expression in predicting inferior prognosis in patients with high CD3+ tissue cellularity ("hot"/inflammatory tumors). However, both PD-1+ and PD-L1+ expression showed adverse prognostic effects independent of PD-1/PD-L1 interaction, and PD-1/PD-L1 interaction showed favorable prognostic effect in PD-L1+ patients without high CD3+ tissue cellularity. Macrophage function and tumor-cell MYC expression may contribute to the PD-1-independent adverse prognostic effect of PD-L1+ expression. In summary, low T-cell tissue cellularity has unfavorable prognostic impact in diffuse large B-cell lymphoma, and tissue PD-L1+ expression and T-cell-derived PD-1+ expression have significant adverse impact only in patients with high T-cell infiltration. PD-1/PD-L1 interaction in tissue is essential but not always responsible for the inhibitory effect of PD-L1+/PD-1+ expression. These results suggest the benefit of PD-1/PD-L1 blockade therapies only in patients with sufficient T-cell infiltration, and the potential of immunofluorescent assays and Automated Quantitative Analysis in the clinical assessment of PD-1/PD-L1 expression and interaction.Item Open Access Structural and Biochemical Dissection of the Trehalose Biosynthetic Complex in Pathogenic Fungi(2016) Miao, YiTrehalose is a non-reducing disaccharide essential for pathogenic fungal survival and virulence. The biosynthesis of trehalose requires the trehalose-6-phosphate synthase, Tps1, and trehalose-6-phosphate phosphatase, Tps2. More importantly, the trehalose biosynthetic pathway is absent in mammals, conferring this pathway as an ideal target for antifungal drug design. However, lack of germane biochemical and structural information hinders antifungal drug design against these targets.
In this dissertation, macromolecular X-ray crystallography and biochemical assays were employed to understand the structures and functions of proteins involved in the trehalose biosynthetic pathway. I report here the first eukaryotic Tps1 structures from Candida albicans (C. albicans) and Aspergillus fumigatus (A. fumigatus) with substrates or substrate analogs. These structures reveal the key residues involved in substrate binding and catalysis. Subsequent enzymatic assays and cellular assays highlight the significance of these key Tps1 residues in enzyme function and fungal stress response. The Tps1 structure captured in its transition-state with a non-hydrolysable inhibitor demonstrates that Tps1 adopts an “internal return like” mechanism for catalysis. Furthermore, disruption of the trehalose biosynthetic complex formation through abolishing Tps1 dimerization reveals that complex formation has regulatory function in addition to trehalose production, providing additional targets for antifungal drug intervention.
I also present here the structure of the Tps2 N-terminal domain (Tps2NTD) from C. albicans, which may be involved in the proper formation of the trehalose biosynthetic complex. Deletion of the Tps2NTD results in a temperature sensitive phenotype. Further, I describe in this dissertation the structures of the Tps2 phosphatase domain (Tps2PD) from C. albicans, A. fumigatus and Cryptococcus neoformans (C. neoformans) in multiple conformational states. The structures of the C. albicans Tps2PD -BeF3-trehalose complex and C. neoformans Tps2PD(D24N)-T6P complex reveal extensive interactions between both glucose moieties of the trehalose involving all eight hydroxyl groups and multiple residues of both the cap and core domains of Tps2PD. These structures also reveal that steric hindrance is a key underlying factor for the exquisite substrate specificity of Tps2PD. In addition, the structures of Tps2PD in the open conformation provide direct visualization of the conformational changes of this domain that are effected by substrate binding and product release.
Last, I present the structure of the C. albicans trehalose synthase regulatory protein (Tps3) pseudo-phosphatase domain (Tps3PPD) structure. Tps3PPD adopts a haloacid dehydrogenase superfamily (HADSF) phosphatase fold with a core Rossmann-fold domain and a α/β fold cap domain. Despite lack of phosphatase activity, the cleft between the Tps3PPD core domain and cap domain presents a binding pocket for a yet uncharacterized ligand. Identification of this ligand could reveal the cellular function of Tps3 and any interconnection of the trehalose biosynthetic pathway with other cellular metabolic pathways.
Combined, these structures together with significant biochemical analyses advance our understanding of the proteins responsible for trehalose biosynthesis. These structures are ready to be exploited to rationally design or optimize inhibitors of the trehalose biosynthetic pathway enzymes. Hence, the work described in this thesis has laid the groundwork for the design of Tps1 and Tps2 specific inhibitors, which ultimately could lead to novel therapeutics to treat fungal infections.