Browsing by Author "Miller, Carmen"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A human stem cell-derived model reveals pathologic extracellular matrix remodeling in diabetic podocyte injury.(Matrix biology plus, 2024-12) Roye, Yasmin; Miller, Carmen; Kalejaiye, Titilola D; Musah, SamiraDiabetic nephropathy results from chronic (or uncontrolled) hyperglycemia and is the leading cause of kidney failure. The kidney's glomerular podocytes are highly susceptible to diabetic injury and subsequent non-reversible degeneration. We generated a human induced pluripotent stem (iPS) cell-derived model of diabetic podocytopathy to investigate disease pathogenesis and progression. The model recapitulated hallmarks of podocytopathy that precede proteinuria including retraction of foot processes and podocytopenia (detachment from the extracellular matrix (ECM)). Moreover, hyperglycemia-induced injury to podocytes exacerbated remodeling of the ECM. Specifically, mature podocytes aberrantly increased expression and excessively deposited collagen (IV)α1α1α2 that is normally abundant in the embryonic glomerulus. This collagen (IV) imbalance coincided with dysregulation of lineage-specific proteins, structural abnormalities of the ECM, and podocytopenia - a mechanism not shared with endothelium and is distinct from drug-induced injury. Intriguingly, repopulation of hyperglycemia-injured podocytes on decellularized ECM scaffolds isolated from healthy podocytes attenuated the loss of synaptopodin (a mechanosensitive protein associated with podocyte health). These results demonstrate that human iPS cell-derived podocytes can facilitate in vitro studies to uncover the mechanisms of chronic hyperglycemia and ECM remodeling and guide disease target identification.Item Open Access Fenestrated Endothelial Cells across Organs: Insights into Kidney Function and Disease.(International journal of molecular sciences, 2024-08) Mou, Xingrui; Leeman, Sophia M; Roye, Yasmin; Miller, Carmen; Musah, SamiraIn the human body, the vascular system plays an indispensable role in maintaining homeostasis by supplying oxygen and nutrients to cells and organs and facilitating the removal of metabolic waste and toxins. Blood vessels-the key constituents of the vascular system-are composed of a layer of endothelial cells on their luminal surface. In most organs, tightly packed endothelial cells serve as a barrier separating blood and lymph from surrounding tissues. Intriguingly, endothelial cells in some tissues and organs (e.g., choroid plexus, liver sinusoids, small intestines, and kidney glomerulus) form transcellular pores called fenestrations that facilitate molecular and ionic transport across the vasculature and mediate immune responses through leukocyte transmigration. However, the development and unique functions of endothelial cell fenestrations across organs are yet to be fully uncovered. This review article provides an overview of fenestrated endothelial cells in multiple organs. We describe their development and organ-specific roles, with expanded discussions on their contributions to glomerular health and disease. We extend these discussions to highlight the dynamic changes in endothelial cell fenestrations in diabetic nephropathy, focal segmental glomerulosclerosis, Alport syndrome, and preeclampsia, and how these unique cellular features could be targeted for therapeutic development. Finally, we discuss emerging technologies for in vitro modeling of biological systems, and their relevance for advancing the current understanding of endothelial cell fenestrations in health and disease.