Browsing by Author "Min, Hyunjung"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Improving thymus implantation for congenital athymia with interleukin-7.(Clinical & translational immunology, 2023-01) Min, Hyunjung; Valente, Laura A; Xu, Li; O'Neil, Shane M; Begg, Lauren R; Kurtzberg, Joanne; Filiano, Anthony JObjectives
Thymus implantation is a recently FDA-approved therapy for congenital athymia. Patients receiving thymus implantation develop a functional but incomplete T cell compartment. Our objective was to develop a mouse model to study clinical thymus implantation in congenital athymia and to optimise implantation procedures to maximise T cell education and expansion of naïve T cells.Methods
Using Foxn1 nu athymic mice as recipients, we tested MHC-matched and -mismatched donor thymi that were implanted as fresh tissue or cultured to remove donor T cells. We first implanted thymus under the kidney capsule and then optimised intramuscular implantation. Using competitive adoptive transfer assays, we investigated whether the failure of newly developed T cells to expand into a complete T cell compartment was because of intrinsic deficits or whether there were deficits in engaging MHC molecules in the periphery. Finally, we tested whether recombinant IL-7 would promote the expansion of host naïve T cells educated by the implanted thymus.Results
We determined that thymus implants in Foxn1 nu athymic mice mimic many aspects of clinical thymus implants in patients with congenital athymia. When we implanted cultured, MHC-mismatched donor thymus into Foxn1 nu athymic mice, mice developed a limited T cell compartment with notably underdeveloped naïve populations and overrepresented memory-like T cells. Newly generated T cells were predominantly educated by MHC molecules expressed by the donor thymus, thus potentially undergoing another round of selection once in the peripheral circulation. Using competitive adoptive transfer assays, we compared expansion rates of T cells educated on donor thymus versus T cells educated during typical thymopoiesis in MHC-matched and -mismatched environments. Once in the circulation, regardless of the MHC haplotypes, T cells educated on a donor thymus underwent abnormal expansion with initially more robust proliferation coupled with greater cell death, resembling IL-7 independent spontaneous expansion. Treating implanted mice with recombinant interleukin (IL-7) promoted homeostatic expansion that improved T cell development, expanded the T cell receptor repertoire, and normalised the naïve T cell compartment.Conclusion
We conclude that implanting cultured thymus into the muscle of Foxn1 nu athymic mice is an appropriate system to study thymus implantation for congenital athymia and immunodeficiencies. T cells are educated by the donor thymus, yet naïve T cells have deficits in expansion. IL-7 greatly improves T cell development after thymus implantation and may offer a novel strategy to improve outcomes of clinical thymus implantation.Item Open Access Mesenchymal stromal cells reprogram monocytes and macrophages with processing bodies.(Stem cells (Dayton, Ohio), 2021-01) Min, Hyunjung; Xu, Li; Parrott, Roberta; Overall, Christopher C; Lillich, Melina; Rabjohns, Emily M; Rampersad, Rishi R; Tarrant, Teresa K; Meadows, Norin; Fernandez-Castaneda, Anthony; Gaultier, Alban; Kurtzberg, Joanne; Filiano, Anthony JMesenchymal stromal cells (MSCs) are widely used in clinical trials because of their ability to modulate inflammation. The success of MSCs has been variable over 25 years, most likely due to an incomplete understanding of their mechanism. After MSCs are injected, they traffic to the lungs and other tissues where they are rapidly cleared. Despite being cleared, MSCs suppress the inflammatory response in the long term. Using human cord tissue-derived MSCs (hCT-MSCs), we demonstrated that hCT-MSCs directly interact and reprogram monocytes and macrophages. After engaging hCT-MSCs, monocytes and macrophages engulfed cytoplasmic components of live hCT-MSCs, then downregulated gene programs for antigen presentation and costimulation, and functionally suppressed the activation of helper T cells. We determined that low-density lipoprotein receptor-related proteins on monocytes and macrophages mediated the engulfment of hCT-MSCs. Since a large amount of cellular information can be packaged in cytoplasmic RNA processing bodies (p-bodies), we generated p-body deficient hCT-MSCs and confirmed that they failed to reprogram monocytes and macrophages in vitro and in vivo. hCT-MSCs suppressed an inflammatory response caused by a nasal lipopolysaccharide challenge. Although both control and p-body deficient hCT-MSCs were engulfed by infiltrating lung monocytes and macrophages, p-body deficient hCT-MSCs failed to suppress inflammation and downregulate MHC-II. Overall, we identified a novel mechanism by which hCT-MSCs indirectly suppressed a T-cell response by directly interacting and reprogramming monocytes and macrophages via p-bodies. The results of this study suggest a novel mechanism for how MSCs can reprogram the inflammatory response and have long-term effects to suppress inflammation.