Browsing by Author "Mirando, Anthony J"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Characterization complex collagen fiber architecture in knee joint using high-resolution diffusion imaging.(Magnetic resonance in medicine, 2020-01-21) Wang, Nian; Mirando, Anthony J; Cofer, Gary; Qi, Yi; Hilton, Matthew J; Johnson, G AllanPURPOSE:To evaluate the complex fiber orientations and 3D collagen fiber network of knee joint connective tissues, including ligaments, muscle, articular cartilage, and meniscus using high spatial and angular resolution diffusion imaging. METHODS:Two rat knee joints were scanned using a modified 3D diffusion-weighted spin echo pulse sequence with the isotropic spatial resolution of 45 μm at 9.4T. The b values varied from 250 to 1250 s/mm2 with 31 diffusion encoding directions for 1 rat knee. The b value was fixed to 1000 s/mm2 with 147 diffusion encoding directions for the second knee. Both the diffusion tensor imaging (DTI) model and generalized Q-sampling imaging (GQI) method were used to investigate the fiber orientation distributions and tractography with the validation of polarized light microscopy. RESULTS:To better resolve the crossing fibers, the b value should be great than or equal to 1000 s/mm2 . The tractography results were comparable between the DTI model and GQI method in ligament and muscle. However, the tractography exhibited apparent difference between DTI and GQI in connective tissues with more complex collagen fibers network, such as cartilage and meniscus. In articular cartilage, there were numerous crossing fibers found in superficial zone and transitional zone. Tractography generated with GQI also resulted in more intact tracts in articular cartilage than DTI. CONCLUSION:High-resolution diffusion imaging with GQI method can trace the complex collagen fiber orientations and architectures of the knee joint at microscopic resolution.Item Open Access Effect of surface topography on in vitro osteoblast function and mechanical performance of 3D printed titanium.(Journal of biomedical materials research. Part A, 2021-10) Abar, Bijan; Kelly, Cambre; Pham, Anh; Allen, Nicholas; Barber, Helena; Kelly, Alexander; Mirando, Anthony J; Hilton, Matthew J; Gall, Ken; Adams, Samuel BCritical-sized defects remain a significant challenge in orthopaedics. 3D printed scaffolds are a promising treatment but are still limited due to inconsistent osseous integration. The goal of the study is to understand how changing the surface roughness of 3D printed titanium either by surface treatment or artificially printing rough topography impacts the mechanical and biological properties of 3D printed titanium. Titanium tensile samples and discs were printed via laser powder bed fusion. Roughness was manipulated by post-processing printed samples or by directly printing rough features. Experimental groups in order of increasing surface roughness were Polished, Blasted, As Built, Sprouts, and Rough Sprouts. Tensile behavior of samples showed reduced strength with increasing surface roughness. MC3T3 pre-osteoblasts were seeded on discs and analyzed for cellular proliferation, differentiation, and matrix deposition at 0, 2, and 4 weeks. Printing roughness diminished mechanical properties such as tensile strength and ductility without clear benefit to cell growth. Roughness features were printed on mesoscale, unlike samples in literature in which roughness on microscale demonstrated an increase in cell activity. The data suggest that printing artificial roughness on titanium scaffold is not an effective strategy to promote osseous integration.Item Open Access Identification of distinct non-myogenic skeletal-muscle-resident mesenchymal cell populations.(Cell reports, 2022-05) Leinroth, Abigail P; Mirando, Anthony J; Rouse, Douglas; Kobayahsi, Yoshihiko; Tata, Purushothama Rao; Rueckert, Helen E; Liao, Yihan; Long, Jason T; Chakkalakal, Joe V; Hilton, Matthew JMesenchymal progenitors of the lateral plate mesoderm give rise to various cell fates within limbs, including a heterogeneous group of muscle-resident mesenchymal cells. Often described as fibro-adipogenic progenitors, these cells are key players in muscle development, disease, and regeneration. To further define this cell population(s), we perform lineage/reporter analysis, flow cytometry, single-cell RNA sequencing, immunofluorescent staining, and differentiation assays on normal and injured murine muscles. Here we identify six distinct Pdgfra+ non-myogenic muscle-resident mesenchymal cell populations that fit within a bipartite differentiation trajectory from a common progenitor. One branch of the trajectory gives rise to two populations of immune-responsive mesenchymal cells with strong adipogenic potential and the capability to respond to acute and chronic muscle injury, whereas the alternative branch contains two cell populations with limited adipogenic capacity and inherent mineralizing capabilities; one of the populations displays a unique neuromuscular junction association and an ability to respond to nerve injury.