Browsing by Author "Mito, Jeffrey"
- Results Per Page
- Sort Options
Item Open Access Characterization of a Mouse Model of Soft Tissue Sarcoma: Intraoperative Molecular Imaging and miRNA Regulation of Metastasis(2013) Mito, JeffreySoft Tissue Sarcomas are a rare group of mesenchymal tumors with over 50 recognized subtypes. These tumors are a diverse group of malignancies that primarily arise from the connective tissue, fat and muscle. In the United States, there are estimated to be approximately 11,000 new diagnoses a year with an annual mortality rate approaching 40%. Unfortunately, with such a diversity of subtypes of soft tissue sarcoma, and the relative scarcity of patient samples, there is a need for animal models that faithfully recapitulate the biology of these tumors. Such animal models would be useful for dissecting the underlying biology of soft tissue sarcomas and to evaluate novel therapies. One such model is the LSL-KrasG12D; p53Flox/Flox mouse model of soft tissue sarcoma. These tumors are generated in a spatial and temporally restricted fashion and closely mimic the natural history of human soft tissue sarcomas, including a predilection to develop lung metastases. Here I will characterize this model of soft tissue sarcoma by: 1) performing cross species genomic comparisons to show that the LSL-KrasG12D; p53Flox/Flox mouse model of soft tissue sarcoma most closely resembles Undifferentiated Pleomorphic Sarcoma , 2) utilizing this mouse model to identify cathepsin proteases as molecular markers of soft tissue sarcoma. I will then use cathepsin activated imaging probes for intraoperative molecular imaging to identify microscopic residual cancer in real time. Finally, 3) I identify a novel mechanism through which MAPK signaling regulates miRNA biogenesis and the development of distant metastases in the LSL-KrasG12D; p53Flox/Flox mouse model of soft tissue sarcoma.
Item Open Access Data set for "Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: Application to the detection of residual disease in tumor margins"(2013-03-12) Brown, JQ; Dodd, L; Geradts, J; Harmany, Z; Kennedy, S; Kim, Y; Kirsch, David Guy; Mito, Jeffrey; Mueller, J; Ramanujam, Nimmi; Willett, RebeccaThis is data that is published in the article "Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: Application to the detection of residual disease in tumor margins".Item Open Access Selective enhancement of donor hematopoietic cell engraftment by the CXCR4 antagonist AMD3100 in a mouse transplantation model.(PLoS One, 2010-06-28) Kang, Yubin; Chen, Benny J; Deoliveira, Divino; Mito, Jeffrey; Chao, Nelson JThe interaction between stromal cell-derived factor-1 (SDF-1) with CXCR4 chemokine receptors plays an important role in hematopoiesis following hematopoietic stem cell transplantation. We examined the efficacy of post transplant administration of a specific CXCR4 antagonist (AMD3100) in improving animal survival and in enhancing donor hematopoietic cell engraftment using a congeneic mouse transplantation model. AMD3100 was administered subcutaneously at 5 mg/kg body weight 3 times a week beginning at day +2 post-transplant. Post-transplant administration of AMD3100 significantly improves animal survival. AMD3100 reduces pro-inflammatory cytokine/chemokine production. Furthermore, post transplant administration of AMD3100 selectively enhances donor cell engraftment and promotes recovery of all donor cell lineages (myeloid cells, T and B lymphocytes, erythrocytes and platelets). This enhancement results from a combined effect of increased marrow niche availability and greater cell division induced by AMD3100. Our studies shed new lights into the biological roles of SDF-1/CXCR4 interaction in hematopoietic stem cell engraftment following transplantation and in transplant-related mortality. Our results indicate that AMD3100 provides a novel approach for enhancing hematological recovery following transplantation, and will likely benefit patients undergoing transplantation.