Browsing by Author "Mitroff, Stephen R"
Results Per Page
Sort Options
Item Open Access A Common Mechanism for Perceptual Reversals in Motion-Induced Blindness, the Troxler Effect, and Perceptual Filling-In.(Perception, 2016-10-03) Devyatko, Dina; Appelbaum, L Gregory; Mitroff, Stephen RSeveral striking visual phenomena involve a physically present stimulus that alternates between being perceived and being "invisible." For example, motion-induced blindness, the Troxler effect, and perceptual filling-in all consist of subjective alternations where an item repeatedly changes from being seen to unseen. In the present study, we explored whether these three specific visual phenomena share any commonalities in their alternation rates and patterns to better understand the mechanisms of each. Data from 69 individuals revealed moderate to strong correlations across the three phenomena for the number of perceptual disappearances and the accumulated duration of the disappearances. Importantly, these effects were not correlated with eye movement patterns (saccades) assessed through eye tracking, differences in motion sensitivity as indexed by dot coherence and speed perception thresholds, or simple reaction time abilities. Principal component analyses revealed a single component that explained 67% of the variance for the number of perceptual reversals and 60% for the accumulated duration of the disappearances. The temporal dynamics of illusory disappearances was also compared for each phenomenon, and normalized durations of disappearances were well fit by a gamma distribution with similar shape parameters for each phenomenon, suggesting that they may be driven by a single oscillatory mechanism.Item Open Access Action video game playing is associated with improved visual sensitivity, but not alterations in visual sensory memory.(Atten Percept Psychophys, 2013-08) Appelbaum, L Gregory; Cain, Matthew S; Darling, Elise F; Mitroff, Stephen RAction video game playing has been experimentally linked to a number of perceptual and cognitive improvements. These benefits are captured through a wide range of psychometric tasks and have led to the proposition that action video game experience may promote the ability to extract statistical evidence from sensory stimuli. Such an advantage could arise from a number of possible mechanisms: improvements in visual sensitivity, enhancements in the capacity or duration for which information is retained in visual memory, or higher-level strategic use of information for decision making. The present study measured the capacity and time course of visual sensory memory using a partial report performance task as a means to distinguish between these three possible mechanisms. Sensitivity measures and parameter estimates that describe sensory memory capacity and the rate of memory decay were compared between individuals who reported high evels and low levels of action video game experience. Our results revealed a uniform increase in partial report accuracy at all stimulus-to-cue delays for action video game players but no difference in the rate or time course of the memory decay. The present findings suggest that action video game playing may be related to enhancements in the initial sensitivity to visual stimuli, but not to a greater retention of information in iconic memory buffers.Item Open Access Age-related preservation of top-down control over distraction in visual search.(Experimental aging research, 2010-07) Costello, Matthew C; Madden, David J; Shepler, Anne M; Mitroff, Stephen R; Leber, Andrew BVisual search studies have demonstrated that older adults can have preserved or even increased top-down control over distraction. However, the results are mixed as to the extent of this age-related preservation. The present experiment assesses group differences in younger and older adults during visual search, with a task featuring two conditions offering varying degrees of top-down control over distraction. After controlling for generalized slowing, the analyses revealed that the age groups were equally capable of utilizing top-down control to minimize distraction. Furthermore, for both age groups, the distraction effect was manifested in a sustained manner across the reaction time distribution.Item Open Access Effects of Expectation, Experience, and Environment on Visual Search(2009) Fleck, Mathias SamuelA pervasive aspect of daily life is searching for a specific target amongst an array of distracting items. Studying such visual searches offers a useful and powerful tool for revealing the underlying aspects of visual attention. Understanding how factors influence accurate target detection serves to both enhance real-world search tasks and inform basic cognitive psychology. The goal of the research presented herein is to examine the effects of expectation, experience, and environment on search behavior. The experiments are conducted in controlled laboratory environments, but are designed to simulate real-world searches, with the express goal of informing the implementation of search tasks in everyday life. First, expectation is explored by manipulating target prevalence and measuring the resultant change in behavior as participants' biases shift. Second, experience is tested by comparing individuals with and without extensive video game exposure, specifically on their susceptibility to the pressures of rare target search. Lastly, environment is examined by utilizing multiple simultaneous targets. This manipulation has been shown to induce errors in radiology, and here the generality of this effect is explored to establish the various pressures to which it is sensitive. Collectively, these data serve to inform how different influences modulate visual search performance, and the results can directly inform the training, recruitment, and execution of real-world search tasks such as those in radiology, cytology, and airport security.
Item Open Access Grabbing Your Attention: The Impact of Finding a First Target in Multiple-Target Search(2016) Adamo, Stephen HunterFor over 50 years, the Satisfaction of Search effect, and more recently known as the Subsequent Search Miss (SSM) effect, has plagued the field of radiology. Defined as a decrease in additional target accuracy after detecting a prior target in a visual search, SSM errors are known to underlie both real-world search errors (e.g., a radiologist is more likely to miss a tumor if a different tumor was previously detected) and more simplified, lab-based search errors (e.g., an observer is more likely to miss a target ‘T’ if a different target ‘T’ was previously detected). Unfortunately, little was known about this phenomenon’s cognitive underpinnings and SSM errors have proven difficult to eliminate. However, more recently, experimental research has provided evidence for three different theories of SSM errors: the Satisfaction account, the Perceptual Set account, and the Resource Depletion account. A series of studies examined performance in a multiple-target visual search and aimed to provide support for the Resource Depletion account—a first target consumes cognitive resources leaving less available to process additional targets.
To assess a potential mechanism underlying SSM errors, eye movements were recorded in a multiple-target visual search and were used to explore whether a first target may result in an immediate decrease in second-target accuracy, which is known as an attentional blink. To determine whether other known attentional distractions amplified the effects of finding a first target has on second-target detection, distractors within the immediate vicinity of the targets (i.e., clutter) were measured and compared to accuracy for a second target. To better understand which characteristics of attention were impacted by detecting a first target, individual differences within four characteristics of attention were compared to second-target misses in a multiple-target visual search.
The results demonstrated that an attentional blink underlies SSM errors with a decrease in second-target accuracy from 135ms-405ms after detection or re-fixating a first target. The effects of clutter were exacerbated after finding a first target causing a greater decrease in second-target accuracy as clutter increased around a second-target. The attentional characteristics of modulation and vigilance were correlated with second- target misses and suggest that worse attentional modulation and vigilance are predictive of more second-target misses. Taken together, these result are used as the foundation to support a new theory of SSM errors, the Flux Capacitor theory. The Flux Capacitor theory predicts that once a target is found, it is maintained as an attentional template in working memory, which consumes attentional resources that could otherwise be used to detect additional targets. This theory not only proposes why attentional resources are consumed by a first target, but encompasses the research in support of all three SSM theories in an effort to establish a grand, unified theory of SSM errors.
Item Open Access Improved Visual Cognition through Stroboscopic Training.(Front Psychol, 2011) Appelbaum, L Gregory; Schroeder, Julia E; Cain, Matthew S; Mitroff, Stephen RHumans have a remarkable capacity to learn and adapt, but surprisingly little research has demonstrated generalized learning in which new skills and strategies can be used flexibly across a range of tasks and contexts. In the present work we examined whether generalized learning could result from visual-motor training under stroboscopic visual conditions. Individuals were assigned to either an experimental condition that trained with stroboscopic eyewear or to a control condition that underwent identical training with non-stroboscopic eyewear. The training consisted of multiple sessions of athletic activities during which participants performed simple drills such as throwing and catching. To determine if training led to generalized benefits, we used computerized measures to assess perceptual and cognitive abilities on a variety of tasks before and after training. Computer-based assessments included measures of visual sensitivity (central and peripheral motion coherence thresholds), transient spatial attention (a useful field of view - dual task paradigm), and sustained attention (multiple-object tracking). Results revealed that stroboscopic training led to significantly greater re-test improvement in central visual field motion sensitivity and transient attention abilities. No training benefits were observed for peripheral motion sensitivity or peripheral transient attention abilities, nor were benefits seen for sustained attention during multiple-object tracking. These findings suggest that stroboscopic training can effectively improve some, but not all aspects of visual perception and attention.Item Open Access Improvement in visual search with practice: mapping learning-related changes in neurocognitive stages of processing.(J Neurosci, 2015-04-01) Clark, Kait; Appelbaum, L Gregory; van den Berg, Berry; Mitroff, Stephen R; Woldorff, Marty GPractice can improve performance on visual search tasks; the neural mechanisms underlying such improvements, however, are not clear. Response time typically shortens with practice, but which components of the stimulus-response processing chain facilitate this behavioral change? Improved search performance could result from enhancements in various cognitive processing stages, including (1) sensory processing, (2) attentional allocation, (3) target discrimination, (4) motor-response preparation, and/or (5) response execution. We measured event-related potentials (ERPs) as human participants completed a five-day visual-search protocol in which they reported the orientation of a color popout target within an array of ellipses. We assessed changes in behavioral performance and in ERP components associated with various stages of processing. After practice, response time decreased in all participants (while accuracy remained consistent), and electrophysiological measures revealed modulation of several ERP components. First, amplitudes of the early sensory-evoked N1 component at 150 ms increased bilaterally, indicating enhanced visual sensory processing of the array. Second, the negative-polarity posterior-contralateral component (N2pc, 170-250 ms) was earlier and larger, demonstrating enhanced attentional orienting. Third, the amplitude of the sustained posterior contralateral negativity component (SPCN, 300-400 ms) decreased, indicating facilitated target discrimination. Finally, faster motor-response preparation and execution were observed after practice, as indicated by latency changes in both the stimulus-locked and response-locked lateralized readiness potentials (LRPs). These electrophysiological results delineate the functional plasticity in key mechanisms underlying visual search with high temporal resolution and illustrate how practice influences various cognitive and neural processing stages leading to enhanced behavioral performance.Item Open Access Mapping the structure of perceptual and visual-motor abilities in healthy young adults.(Acta Psychol (Amst), 2015-05) Wang, Lingling; Krasich, Kristina; Bel-Bahar, Tarik; Hughes, Lauren; Mitroff, Stephen R; Appelbaum, L GregoryThe ability to quickly detect and respond to visual stimuli in the environment is critical to many human activities. While such perceptual and visual-motor skills are important in a myriad of contexts, considerable variability exists between individuals in these abilities. To better understand the sources of this variability, we assessed perceptual and visual-motor skills in a large sample of 230 healthy individuals via the Nike SPARQ Sensory Station, and compared variability in their behavioral performance to demographic, state, sleep and consumption characteristics. Dimension reduction and regression analyses indicated three underlying factors: Visual-Motor Control, Visual Sensitivity, and Eye Quickness, which accounted for roughly half of the overall population variance in performance on this battery. Inter-individual variability in Visual-Motor Control was correlated with gender and circadian patters such that performance on this factor was better for males and for those who had been awake for a longer period of time before assessment. The current findings indicate that abilities involving coordinated hand movements in response to stimuli are subject to greater individual variability, while visual sensitivity and occulomotor control are largely stable across individuals.Item Open Access Object files can be purely episodic.(Perception, 2007) Mitroff, Stephen R; Scholl, Brian J; Noles, Nicholaus SOur ability to track an object as the same persisting entity over time and motion may primarily rely on spatiotemporal representations which encode some, but not all, of an object's features. Previous researchers using the 'object reviewing' paradigm have demonstrated that such representations can store featural information of well-learned stimuli such as letters and words at a highly abstract level. However, it is unknown whether these representations can also store purely episodic information (i.e. information obtained from a single, novel encounter) that does not correspond to pre-existing type-representations in long-term memory. Here, in an object-reviewing experiment with novel face images as stimuli, observers still produced reliable object-specific preview benefits in dynamic displays: a preview of a novel face on a specific object speeded the recognition of that particular face at a later point when it appeared again on the same object compared to when it reappeared on a different object (beyond display-wide priming), even when all objects moved to new positions in the intervening delay. This case study demonstrates that the mid-level visual representations which keep track of persisting identity over time--e.g. 'object files', in one popular framework can store not only abstract types from long-term memory, but also specific tokens from online visual experience.Item Open Access Rare targets are rarely missed in correctable search.(Psychol Sci, 2007-11) Fleck, Mathias S; Mitroff, Stephen RFailing to find a tumor in an x-ray scan or a gun in an airport baggage screening can have dire consequences, making it fundamentally important to elucidate the mechanisms that hinder performance in such visual searches. Recent laboratory work has indicated that low target prevalence can lead to disturbingly high miss rates in visual search. Here, however, we demonstrate that misses in low-prevalence searches can be readily abated. When targets are rarely present, observers adapt by responding more quickly, and miss rates are high. Critically, though, these misses are often due to response-execution errors, not perceptual or identification errors: Observers know a target was present, but just respond too quickly. When provided an opportunity to correct their last response, observers can catch their mistakes. Thus, low target prevalence may not be a generalizable cause of high miss rates in visual search.Item Open Access Sensorimotor Learning in a Computerized Athletic Training Battery.(J Mot Behav, 2016-09) Krasich, Kristina; Ramger, Ben; Holton, Laura; Wang, Lingling; Mitroff, Stephen R; Gregory Appelbaum, LSensorimotor abilities are crucial for performance in athletic, military, and other occupational activities, and there is great interest in understanding learning in these skills. Here, behavioral performance was measured over three days as twenty-seven participants practiced multiple sessions on the Nike SPARQ Sensory Station (Nike, Inc., Beaverton, Oregon), a computerized visual and motor assessment battery. Wrist-worn actigraphy was recorded to monitor sleep-wake cycles. Significant learning was observed in tasks with high visuomotor control demands but not in tasks of visual sensitivity. Learning was primarily linear, with up to 60% improvement, but did not relate to sleep quality in this normal-sleeping population. These results demonstrate differences in the rate and capacity for learning across perceptual and motor domains, indicating potential targets for sensorimotor training interventions.Item Open Access Stroboscopic visual training improves information encoding in short-term memory.(Atten Percept Psychophys, 2012-11) Appelbaum, L Gregory; Cain, Matthew S; Schroeder, Julia E; Darling, Elise F; Mitroff, Stephen RThe visual system has developed to transform an undifferentiated and continuous flow of information into discrete and manageable representations, and this ability rests primarily on the uninterrupted nature of the input. Here we explore the impact of altering how visual information is accumulated over time by assessing how intermittent vision influences memory retention. Previous work has shown that intermittent, or stroboscopic, visual training (i.e., practicing while only experiencing snapshots of vision) can enhance visual-motor control and visual cognition, yet many questions remain unanswered about the mechanisms that are altered. In the present study, we used a partial-report memory paradigm to assess the possible changes in visual memory following training under stroboscopic conditions. In Experiment 1, the memory task was completed before and immediately after a training phase, wherein participants engaged in physical activities (e.g., playing catch) while wearing either specialized stroboscopic eyewear or transparent control eyewear. In Experiment 2, an additional group of participants underwent the same stroboscopic protocol but were delayed 24 h between training and assessment, so as to measure retention. In comparison to the control group, both stroboscopic groups (immediate and delayed retest) revealed enhanced retention of information in short-term memory, leading to better recall at longer stimulus-to-cue delays (640-2,560 ms). These results demonstrate that training under stroboscopic conditions has the capacity to enhance some aspects of visual memory, that these faculties generalize beyond the specific tasks that were trained, and that trained improvements can be maintained for at least a day.Item Open Access Variation in Visual Search Abilities and Performance(2014) Clark, KaitVisual search, the process of detecting relevant items within an environment, is a vital skill required for navigating one's visual environment as well as for careers, such as radiology and airport security, that rely upon accurate searching. Research over the course of several decades has established that visual search requires the integration of low- and high-level cognitive processes, including sensory analysis, attentional allocation, target discrimination, and decision-making. Search abilities are malleable and vary in accordance with long-term experiences, direct practice, and contextual factors in the immediate environment; however, the mechanisms responsible for changes in search performance remain largely unclear. A series of studies examine variation in visual search abilities and performance and aim to identify the underlying mechanisms.
To assess differences associated with long-term experiences, visual search performance is compared between laypersons (typically undergraduates) and specific populations, including radiologists and avid action video game players. Behavioral markers of search processes are used to elucidate causes of enhanced search performance. To assess differences associated with direct practice, laypersons perform a visual search task over five consecutive days, and electrophysiological activity is recorded from the scalp on the first and last days of the protocol. Electrophysiological markers associated with specific stages of processing are analyzed to determine neurocognitive changes contributing to improved performance. To assess differences associated with contextual factors, laypersons are randomly assigned to experimental conditions in which they complete a visual search task within a particular framework or in the presence or absence of motivation, feedback, and/or time pressure.
Results demonstrate that search abilities can improve through experience and direct training, but the mechanisms underlying effects in each case are different. Long-term experiences are associated with strategic attentional allocation, but direct training can improve low-level sensory analysis in addition to higher-level processes. Results also demonstrate nuanced effects of experience and context. On searches that contain multiple targets, task framework impacts accuracy for detecting additional targets after one target has been identified. The combination of motivation and feedback enhances accuracy for both single- and multiple-target searches. Implications for cognitive theory and applications to occupational protocols are discussed.