Browsing by Author "Moal, Bertrand"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access A standardized nomenclature for cervical spine soft-tissue release and osteotomy for deformity correction: clinical article.(Journal of neurosurgery. Spine, 2013-09) Ames, Christopher P; Smith, Justin S; Scheer, Justin K; Shaffrey, Christopher I; Lafage, Virginie; Deviren, Vedat; Moal, Bertrand; Protopsaltis, Themistocles; Mummaneni, Praveen V; Mundis, Gregory M; Hostin, Richard; Klineberg, Eric; Burton, Douglas C; Hart, Robert; Bess, Shay; Schwab, Frank J; International Spine Study GroupObject
Cervical spine osteotomies are powerful techniques to correct rigid cervical spine deformity. Many variations exist, however, and there is no current standardized system with which to describe and classify cervical osteotomies. This complicates the ability to compare outcomes across procedures and studies. The authors' objective was to establish a universal nomenclature for cervical spine osteotomies to provide a common language among spine surgeons.Methods
A proposed nomenclature with 7 anatomical grades of increasing extent of bone/soft tissue resection and destabilization was designed. The highest grade of resection is termed the major osteotomy, and an approach modifier is used to denote the surgical approach(es), including anterior (A), posterior (P), anterior-posterior (AP), posterior-anterior (PA), anterior-posterior-anterior (APA), and posterior-anterior-posterior (PAP). For cases in which multiple grades of osteotomies were performed, the highest grade is termed the major osteotomy, and lower-grade osteotomies are termed minor osteotomies. The nomenclature was evaluated by 11 reviewers through 25 different radiographic clinical cases. The review was performed twice, separated by a minimum 1-week interval. Reliability was assessed using Fleiss kappa coefficients.Results
The average intrarater reliability was classified as "almost perfect agreement" for the major osteotomy (0.89 [range 0.60-1.00]) and approach modifier (0.99 [0.95-1.00]); it was classified as "moderate agreement" for the minor osteotomy (0.73 [range 0.41-1.00]). The average interrater reliability for the 2 readings was the following: major osteotomy, 0.87 ("almost perfect agreement"); approach modifier, 0.99 ("almost perfect agreement"); and minor osteotomy, 0.55 ("moderate agreement"). Analysis of only major osteotomy plus approach modifier yielded a classification that was "almost perfect" with an average intrarater reliability of 0.90 (0.63-1.00) and an interrater reliability of 0.88 and 0.86 for the two reviews.Conclusions
The proposed cervical spine osteotomy nomenclature provides the surgeon with a simple, standard description of the various cervical osteotomies. The reliability analysis demonstrated that this system is consistent and directly applicable. Future work will evaluate the relationship between this system and health-related quality of life metrics.Item Open Access Change in classification grade by the SRS-Schwab Adult Spinal Deformity Classification predicts impact on health-related quality of life measures: prospective analysis of operative and nonoperative treatment.(Spine, 2013-09) Smith, Justin S; Klineberg, Eric; Schwab, Frank; Shaffrey, Christopher I; Moal, Bertrand; Ames, Christopher P; Hostin, Richard; Fu, Kai-Ming G; Burton, Douglas; Akbarnia, Behrooz; Gupta, Munish; Hart, Robert; Bess, Shay; Lafage, Virginie; International Spine Study GroupStudy design
Multicenter, prospective, consecutive series.Objective
To evaluate responsiveness of the Scoliosis Research Society (SRS)-Schwab adult spinal deformity (ASD) classification to changes in health-related quality of life (HRQOL) after treatment for ASD.Summary of background data
Ideally, a classification system should describe and be responsive to changes in a disease state. We hypothesized that the SRS-Schwab classification is responsive to changes in HRQOL measures after treatment for ASD.Methods
A multicenter, prospective, consecutive series from the International Spine Study Group.Inclusion criteria
ASD, age more than 18, operative or nonoperative treatment, baseline and 1-year radiographs, and HRQOL measures (Oswestry Disability Index [ODI], SRS-22, Short Form [SF]-36). The SRS-Schwab classification includes a curve descriptor and 3 sagittal spinopelvic modifiers (sagittal vertical axis [SVA], pelvic tilt, pelvic incidence/lumbar lordosis [PI-LL] mismatch). Changes in modifiers at 1 year were assessed for impact on HRQOL from pretreatment values based on minimal clinically important differences.Results
Three hundred forty-one patients met criteria (mean age = 54; 85% females; 177 operative and 164 nonoperative). Change in pelvic tilt modifier at 1-year follow-up was associated with changes in ODI and SRS-22 (total and appearance scores) (P ≤ 0.034). Change in SVA modifier at 1 year was associated with changes in ODI, SF-36 physical component score, and SRS-22 (total, activity, and appearance scores) (P ≤ 0.037). Change in PI-LL modifier at 1 year was associated with changes in SF-36 physical component score and SRS-22 (total, activity, and appearance scores) (P ≤ 0.03). Patients with improvement of pelvic tilt, SVA, or PI-LL modifiers were significantly more likely to achieve minimal clinically important difference for ODI, SF-36 physical component score (SVA and PI-LL only), SRS activity, and SRS pain (PI-LL only).Conclusion
The SRS-Schwab classification provides a validated system to evaluate ASD, and the classification components correlate with HRQOL measures. This study demonstrates that the classification modifiers are responsive to changes in disease state and reflect significant changes in patient-reported outcomes.Level of evidence
3.Item Open Access The minimally invasive spinal deformity surgery algorithm: a reproducible rational framework for decision making in minimally invasive spinal deformity surgery.(Neurosurgical focus, 2014-05) Mummaneni, Praveen V; Shaffrey, Christopher I; Lenke, Lawrence G; Park, Paul; Park, Paul; Wang, Michael Y; La Marca, Frank; Smith, Justin S; Mundis, Gregory M; Okonkwo, David O; Moal, Bertrand; Fessler, Richard G; Anand, Neel; Uribe, Juan S; Kanter, Adam S; Akbarnia, Behrooz; Fu, Kai-Ming G; Minimally Invasive Surgery Section of the International Spine Study GroupObject
Minimally invasive surgery (MIS) is an alternative to open deformity surgery for the treatment of patients with adult spinal deformity. However, at this time MIS techniques are not as versatile as open deformity techniques, and MIS techniques have been reported to result in suboptimal sagittal plane correction or pseudarthrosis when used for severe deformities. The minimally invasive spinal deformity surgery (MISDEF) algorithm was created to provide a framework for rational decision making for surgeons who are considering MIS versus open spine surgery.Methods
A team of experienced spinal deformity surgeons developed the MISDEF algorithm that incorporates a patient's preoperative radiographic parameters and leads to one of 3 general plans ranging from MIS direct or indirect decompression to open deformity surgery with osteotomies. The authors surveyed fellowship-trained spine surgeons experienced with spinal deformity surgery to validate the algorithm using a set of 20 cases to establish interobserver reliability. They then resurveyed the same surgeons 2 months later with the same cases presented in a different sequence to establish intraobserver reliability. Responses were collected and tabulated. Fleiss' analysis was performed using MATLAB software.Results
Over a 3-month period, 11 surgeons completed the surveys. Responses for MISDEF algorithm case review demonstrated an interobserver kappa of 0.58 for the first round of surveys and an interobserver kappa of 0.69 for the second round of surveys, consistent with substantial agreement. In at least 10 cases there was perfect agreement between the reviewing surgeons. The mean intraobserver kappa for the 2 surveys was 0.86 ± 0.15 (± SD) and ranged from 0.62 to 1.Conclusions
The use of the MISDEF algorithm provides consistent and straightforward guidance for surgeons who are considering either an MIS or an open approach for the treatment of patients with adult spinal deformity. The MISDEF algorithm was found to have substantial inter- and intraobserver agreement. Although further studies are needed, the application of this algorithm could provide a platform for surgeons to achieve the desired goals of surgery.