Browsing by Author "Mobley, C Brooks"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Different Resistance Exercise Loading Paradigms Similarly Affect Skeletal Muscle Gene Expression Patterns of Myostatin-Related Targets and mTORC1 Signaling Markers.(Cells, 2023-03) McIntosh, Mason C; Sexton, Casey L; Godwin, Joshua S; Ruple, Bradley A; Michel, J Max; Plotkin, Daniel L; Ziegenfuss, Tim N; Lopez, Hector L; Smith, Ryan; Dwaraka, Varun B; Sharples, Adam P; Dalbo, Vincent J; Mobley, C Brooks; Vann, Christopher G; Roberts, Michael DAlthough transcriptome profiling has been used in several resistance training studies, the associated analytical approaches seldom provide in-depth information on individual genes linked to skeletal muscle hypertrophy. Therefore, a secondary analysis was performed herein on a muscle transcriptomic dataset we previously published involving trained college-aged men (n = 11) performing two resistance exercise bouts in a randomized and crossover fashion. The lower-load bout (30 Fail) consisted of 8 sets of lower body exercises to volitional fatigue using 30% one-repetition maximum (1 RM) loads, whereas the higher-load bout (80 Fail) consisted of the same exercises using 80% 1 RM loads. Vastus lateralis muscle biopsies were collected prior to (PRE), 3 h, and 6 h after each exercise bout, and 58 genes associated with skeletal muscle hypertrophy were manually interrogated from our prior microarray data. Select targets were further interrogated for associated protein expression and phosphorylation induced-signaling events. Although none of the 58 gene targets demonstrated significant bout x time interactions, ~57% (32 genes) showed a significant main effect of time from PRE to 3 h (15↑ and 17↓, p < 0.01), and ~26% (17 genes) showed a significant main effect of time from PRE to 6 h (8↑ and 9↓, p < 0.01). Notably, genes associated with the myostatin (9 genes) and mammalian target of rapamycin complex 1 (mTORC1) (9 genes) signaling pathways were most represented. Compared to mTORC1 signaling mRNAs, more MSTN signaling-related mRNAs (7 of 9) were altered post-exercise, regardless of the bout, and RHEB was the only mTORC1-associated mRNA that was upregulated following exercise. Phosphorylated (phospho-) p70S6K (Thr389) (p = 0.001; PRE to 3 h) and follistatin protein levels (p = 0.021; PRE to 6 h) increased post-exercise, regardless of the bout, whereas phospho-AKT (Thr389), phospho-mTOR (Ser2448), and myostatin protein levels remained unaltered. These data continue to suggest that performing resistance exercise to volitional fatigue, regardless of load selection, elicits similar transient mRNA and signaling responses in skeletal muscle. Moreover, these data provide further evidence that the transcriptional regulation of myostatin signaling is an involved mechanism in response to resistance exercise.Item Open Access LAT1 Protein Content Increases Following 12 Weeks of Resistance Exercise Training in Human Skeletal Muscle(Frontiers in Nutrition) Roberson, Paul A; Mobley, C Brooks; Romero, Matthew A; Haun, Cody T; Osburn, Shelby C; Mumford, Petey W; Vann, Christopher G; Greer, Rory A; Ferrando, Arny A; Roberts, Michael DIntroduction: Amino acid transporters are essential for cellular amino acid transport and promoting protein synthesis. While previous literature has demonstrated the association of amino acid transporters and protein synthesis following acute resistance exercise and amino acid supplementation, the chronic effect of resistance exercise and supplementation on amino acid transporters is unknown. The purpose herein was to determine if amino acid transporters and amino acid metabolic enzymes were related to skeletal muscle hypertrophy following resistance exercise training with different nutritional supplementation strategies.Methods: 43 college-aged males were separated into a maltodextrin placebo (PLA, n = 12), leucine (LEU, n = 14), or whey protein concentrate (WPC, n = 17) group and underwent 12 weeks of total-body resistance exercise training. Each group's supplement was standardized for total energy and fat, and LEU and WPC supplements were standardized for total leucine (6 g/d). Skeletal muscle biopsies were obtained prior to training and ~72 h following each subject's last training session.Results: All groups increased type I and II fiber cross-sectional area (fCSA) following training (p < 0.050). LAT1 protein increased following training (p < 0.001) and increased more in PLA than LEU and WPC (p < 0.050). BCKDHα protein increased and ATF4 protein decreased following training (p < 0.001). Immunohistochemistry indicated total LAT1/fiber, but not membrane LAT1/fiber, increased with training (p = 0.003). Utilizing all groups, the change in ATF4 protein, but no other marker, trended to correlate with the change in fCSA (r = 0.314; p = 0.055); however, when regression analysis was used to delineate groups, the change in ATF4 protein best predicted the change in fCSA only in LEU (r2 = 0.322; p = 0.043). In C2C12 myoblasts, LAT1 protein overexpression caused a paradoxical decrease in protein synthesis levels (p = 0.002) and decrease in BCKDHα protein (p = 0.001).Conclusions: Amino acid transporters and metabolic enzymes are affected by resistance exercise training, but do not appear to dictate muscle fiber hypertrophy. In fact, overexpression of LAT1 in vitro decreased protein synthesis.Item Open Access Molecular Differences in Skeletal Muscle After 1 Week of Active vs. Passive Recovery From High-Volume Resistance Training(Journal of Strength and Conditioning Research, 2021-08) Vann, Christopher G; Haun, Cody T; Osburn, Shelby C; Romero, Matthew A; Roberson, Paul A; Mumford, Petey W; Mobley, C Brooks; Holmes, Hudson M; Fox, Carlton D; Young, Kaelin C; Roberts, Michael DAbstract Vann, CG, Haun, CT, Osburn, SC, Romero, MA, Roberson, PA, Mumford, PW, Mobley, CB, Holmes, HM, Fox, CD, Young, KC, and Roberts, MD. Molecular differences in skeletal muscle after 1 week of active vs. passive recovery from high-volume resistance training. J Strength Cond Res 35(8): 2102–2113, 2021—Numerous studies have evaluated how deloading after resistance training (RT) affects strength and power outcomes. However, the molecular adaptations that occur after deload periods remain understudied. Trained, college-aged men (n = 30) performed 6 weeks of whole-body RT starting at 10 sets of 10 repetitions per exercise per week and finishing at 32 sets of 10 repetitions per exercise per week. After this period, subjects performed either active (AR; n = 16) or passive recovery (PR; n = 14) for 1 week where AR completed ∼15% of the week 6 training volume and PR ceased training. Variables related to body composition and recovery examined before RT (PRE), after 6 weeks of RT (POST), and after the 1-week recovery period (DL). Vastus lateralis (VL) muscle biopsies and blood samples were collected at each timepoint, and various biochemical and histological assays were performed. Group × time interactions (p < 0.05) existed for skeletal muscle myosin heavy chain (MHC)-IIa mRNA (AR > PR at POST and DL) and 20S proteasome activity (post-hoc tests revealed no significance in groups over time). Time effects (P < 0.05) existed for total mood disturbance and serum creatine kinase and mechano growth factor mRNA (POST > PRE &D L), VL pressure to pain threshold and MHC-IIx mRNA (PRE&DL > POST), Atrogin-1 and MuRF-1 mRNA (PRE < POST < DL), MHC-I mRNA (PRE < POST & DL), myostatin mRNA (PRE & POST < DL), and mechanistic target of rapamycin (PRE > POST & DL). No interactions or time effects were observed for barbell squat velocity, various hormones, histological metrics, polyubiquitinated proteins, or phosphorylated/pan protein levels of 4E-BP1, p70S6k, and AMPK. One week of AR after a high-volume training block instigates marginal molecular differences in skeletal muscle relative to PR. From a practical standpoint, however, both paradigms elicited largely similar responses.Item Open Access Pre-training Skeletal Muscle Fiber Size and Predominant Fiber Type Best Predict Hypertrophic Responses to 6 Weeks of Resistance Training in Previously Trained Young Men(Frontiers in Physiology) Haun, Cody T; Vann, Christopher G; Mobley, C Brooks; Osburn, Shelby C; Mumford, Petey W; Roberson, Paul A; Romero, Matthew A; Fox, Carlton D; Parry, Hailey A; Kavazis, Andreas N; Moon, Jordan R; Young, Kaelin C; Roberts, Michael DItem Open Access Soy protein supplementation is not androgenic or estrogenic in college-aged men when combined with resistance exercise training(Scientific Reports) Haun, Cody T; Mobley, C Brooks; Vann, Christopher G; Romero, Matthew A; Roberson, Paul A; Mumford, Petey W; Kephart, Wesley C; Healy, James C; Patel, Romil K; Osburn, Shelby C; Beck, Darren T; Arnold, Robert D; Nie, Ben; Lockwood, Christopher M; Roberts, Michael DAbstractIt is currently unclear as to whether sex hormones are significantly affected by soy or whey protein consumption. Additionally, estrogenic signaling may be potentiated via soy protein supplementation due to the presence of phytoestrogenic isoflavones. Limited evidence suggests that whey protein supplementation may increase androgenic signalling. Therefore, the purpose of this study was to examine the effects of soy protein concentrate (SPC), whey protein concentrate (WPC), or placebo (PLA) supplementation on serum sex hormones, androgen signaling markers in muscle tissue, and estrogen signaling markers in subcutaneous (SQ) adipose tissue of previously untrained, college-aged men (n = 47, 20 ± 1 yrs) that resistance trained for 12 weeks. Fasting serum total testosterone increased pre- to post-training, but more so in subjects consuming WPC (p < 0.05), whereas serum 17β-estradiol remained unaltered. SQ estrogen receptor alpha (ERα) protein expression and hormone-sensitive lipase mRNA increased with training regardless of supplementation. Muscle androgen receptor (AR) mRNA increased while ornithine decarboxylase mRNA (a gene target indicative of androgen signaling) decreased with training regardless of supplementation (p < 0.05). No significant interactions of supplement and time were observed for adipose tissue ERα/β protein levels, muscle tissue AR protein levels, or mRNAs in either tissue indicative of altered estrogenic or androgenic activity. Interestingly, WPC had the largest effect on increasing type II muscle fiber cross sectional area values (Cohen’s d = 1.30), whereas SPC had the largest effect on increasing this metric in type I fibers (Cohen’s d = 0.84). These data suggest that, while isoflavones were detected in SPC, chronic WPC or SPC supplementation did not appreciably affect biomarkers related to muscle androgenic signaling or SQ estrogenic signaling. The noted fiber type-specific responses to WPC and SPC supplementation warrant future research.