Browsing by Author "Moon, Hae Sol"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Automated multimodal segmentation of acute ischemic stroke lesions on clinical MR images.(Magnetic resonance imaging, 2022-10) Moon, Hae Sol; Heffron, Lindsay; Mahzarnia, Ali; Obeng-Gyasi, Barnabas; Holbrook, Matthew; Badea, Cristian T; Feng, Wuwei; Badea, AlexandraMagnetic resonance (MR) imaging (MRI) is commonly used to diagnose, assess and monitor stroke. Accurate and timely segmentation of stroke lesions provides the anatomico-structural information that can aid physicians in predicting prognosis, as well as in decision making and triaging for various rehabilitation strategies. To segment stroke lesions, MR protocols, including diffusion-weighted imaging (DWI) and T2-weighted fluid attenuated inversion recovery (FLAIR) are often utilized. These imaging sequences are usually acquired with different spatial resolutions due to time constraints. Within the same image, voxels may be anisotropic, with reduced resolution along slice direction for diffusion scans in particular. In this study, we evaluate the ability of 2D and 3D U-Net Convolutional Neural Network (CNN) architectures to segment ischemic stroke lesions using single contrast (DWI) and dual contrast images (T2w FLAIR and DWI). The predicted segmentations correlate with post-stroke motor outcome measured by the National Institutes of Health Stroke Scale (NIHSS) and Fugl-Meyer Upper Extremity (FM-UE) index based on the lesion loads overlapping the corticospinal tracts (CST), which is a neural substrate for motor movement and function. Although the four methods performed similarly, the 2D multimodal U-Net achieved the best results with a mean Dice of 0.737 (95% CI: 0.705, 0.769) and a relatively high correlation between the weighted lesion load and the NIHSS scores (both at baseline and at 90 days). A monotonically constrained quintic polynomial regression yielded R2 = 0.784 and 0.875 for weighted lesion load versus baseline and 90-Days NIHSS respectively, and better corrected Akaike information criterion (AICc) scores than those of the linear regression. In addition, using the quintic polynomial regression model to regress the weighted lesion load to the 90-Days FM-UE score results in an R2 of 0.570 with a better AICc score than that of the linear regression. Our results suggest that the multi-contrast information enhanced the accuracy of the segmentation and the prediction accuracy for upper extremity motor outcomes. Expanding the training dataset to include different types of stroke lesions and more data points will help add a temporal longitudinal aspect and increase the accuracy. Furthermore, adding patient-specific data may improve the inference about the relationship between imaging metrics and functional outcomes.Item Open Access Identifying vulnerable brain networks associated with Alzheimer's disease risk.(Cerebral cortex (New York, N.Y. : 1991), 2023-04) Mahzarnia, Ali; Stout, Jacques A; Anderson, Robert J; Moon, Hae Sol; Yar Han, Zay; Beck, Kate; Browndyke, Jeffrey N; Dunson, David B; Johnson, Kim G; O'Brien, Richard J; Badea, AlexandraThe selective vulnerability of brain networks in individuals at risk for Alzheimer's disease (AD) may help differentiate pathological from normal aging at asymptomatic stages, allowing the implementation of more effective interventions. We used a sample of 72 people across the age span, enriched for the APOE4 genotype to reveal vulnerable networks associated with a composite AD risk factor including age, genotype, and sex. Sparse canonical correlation analysis (CCA) revealed a high weight associated with genotype, and subgraphs involving the cuneus, temporal, cingulate cortices, and cerebellum. Adding cognitive metrics to the risk factor revealed the highest cumulative degree of connectivity for the pericalcarine cortex, insula, banks of the superior sulcus, and the cerebellum. To enable scaling up our approach, we extended tensor network principal component analysis, introducing CCA components. We developed sparse regression predictive models with errors of 17% for genotype, 24% for family risk factor for AD, and 5 years for age. Age prediction in groups including cognitively impaired subjects revealed regions not found using only normal subjects, i.e. middle and transverse temporal, paracentral and superior banks of temporal sulcus, as well as the amygdala and parahippocampal gyrus. These modeling approaches represent stepping stones towards single subject prediction.