Browsing by Author "Moreno, Fernando"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures.(Opt Express, 2016-09-05) Gutierrez, Yael; Ortiz, Dolores; Sanz, Juan M; Saiz, Jose M; Gonzalez, Francisco; Everitt, Henry O; Moreno, FernandoThe ultraviolet (UV) range presents new challenges for plasmonics, with interesting applications ranging from engineering to biology. In previous research, gallium, aluminum, and magnesium were found to be very promising UV plasmonic metals. However, a native oxide shell surrounds nanostructures of these metals that affects their plasmonic response. Here, through a nanoparticle-oxide core-shell model, we present a detailed electromagnetic analysis of how oxidation alters the UV-plasmonic response of spherical or hemisphere-on-substrate nanostructures made of those metals by analyzing the spectral evolution of two parameters: the absorption efficiency (far-field analysis) and the enhancement of the local intensity averaged over the nanoparticle surface (near-field analysis).Item Open Access Rhodium nanoparticles for ultraviolet plasmonics.(Nano Lett, 2015-02-11) Watson, Anne M; Zhang, Xiao; Alcaraz de la Osa, Rodrigo; Marcos Sanz, Juan; González, Francisco; Moreno, Fernando; Finkelstein, Gleb; Liu, Jie; Everitt, Henry OThe nonoxidizing catalytic noble metal rhodium is introduced for ultraviolet plasmonics. Planar tripods of 8 nm Rh nanoparticles, synthesized by a modified polyol reduction method, have a calculated local surface plasmon resonance near 330 nm. By attaching p-aminothiophenol, local field-enhanced Raman spectra and accelerated photodamage were observed under near-resonant ultraviolet illumination, while charge transfer simultaneously increased fluorescence for up to 13 min. The combined local field enhancement and charge transfer demonstrate essential steps toward plasmonically enhanced ultraviolet photocatalysis.