Browsing by Author "Mt-Isa, Shahrul"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access A Bayesian approach for individual-level drug benefit-risk assessment.(Statistics in medicine, 2019-07) Li, Kan; Luo, Sheng; Yuan, Sammy; Mt-Isa, ShahrulIn existing benefit-risk assessment (BRA) methods, benefit and risk criteria are usually identified and defined separately based on aggregated clinical data and therefore ignore the individual-level differences as well as the association among the criteria. We proposed a Bayesian multicriteria decision-making method for BRA of drugs using individual-level data. We used a multidimensional latent trait model to account for the heterogeneity of treatment effects with latent variables introducing the dependencies among outcomes. We then applied the stochastic multicriteria acceptability analysis approach for BRA incorporating imprecise and heterogeneous patient preference information. We adopted an efficient Markov chain Monte Carlo algorithm when implementing the proposed method. We applied our method to a case study to illustrate how individual-level benefit-risk profiles could inform decision-making.Item Open Access Periodic benefit-risk assessment using Bayesian stochastic multi-criteria acceptability analysis.(Contemporary clinical trials, 2018-04) Li, Kan; Yuan, Shuai Sammy; Wang, William; Wan, Shuyan Sabrina; Ceesay, Paulette; Heyse, Joseph F; Mt-Isa, Shahrul; Luo, ShengBenefit-risk (BR) assessment is essential to ensure the best decisions are made for a medical product in the clinical development process, regulatory marketing authorization, post-market surveillance, and coverage and reimbursement decisions. One challenge of BR assessment in practice is that the benefit and risk profile may keep evolving while new evidence is accumulating. Regulators and the International Conference on Harmonization (ICH) recommend performing periodic benefit-risk evaluation report (PBRER) through the product's lifecycle. In this paper, we propose a general statistical framework for periodic benefit-risk assessment, in which Bayesian meta-analysis and stochastic multi-criteria acceptability analysis (SMAA) will be combined to synthesize the accumulating evidence. The proposed approach allows us to compare the acceptability of different drugs dynamically and effectively and accounts for the uncertainty of clinical measurements and imprecise or incomplete preference information of decision makers. We apply our approaches to two real examples in a post-hoc way for illustration purpose. The proposed method may easily be modified for other pre and post market settings, and thus be an important complement to the current structured benefit-risk assessment (sBRA) framework to improve the transparent and consistency of the decision-making process.