Browsing by Author "Mumby, Peter J"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access A novel framework for analyzing conservation impacts: evaluation, theory, and marine protected areas.(Ann N Y Acad Sci, 2017-07) Mascia, Michael B; Fox, Helen E; Glew, Louise; Ahmadia, Gabby N; Agrawal, Arun; Barnes, Megan; Basurto, Xavier; Craigie, Ian; Darling, Emily; Geldmann, Jonas; Gill, David; Holst Rice, Susie; Jensen, Olaf P; Lester, Sarah E; McConney, Patrick; Mumby, Peter J; Nenadovic, Mateja; Parks, John E; Pomeroy, Robert S; White, Alan TEnvironmental conservation initiatives, including marine protected areas (MPAs), have proliferated in recent decades. Designed to conserve marine biodiversity, many MPAs also seek to foster sustainable development. As is the case for many other environmental policies and programs, the impacts of MPAs are poorly understood. Social-ecological systems, impact evaluation, and common-pool resource governance are three complementary scientific frameworks for documenting and explaining the ecological and social impacts of conservation interventions. We review key components of these three frameworks and their implications for the study of conservation policy, program, and project outcomes. Using MPAs as an illustrative example, we then draw upon these three frameworks to describe an integrated approach for rigorous empirical documentation and causal explanation of conservation impacts. This integrated three-framework approach for impact evaluation of governance in social-ecological systems (3FIGS) accounts for alternative explanations, builds upon and advances social theory, and provides novel policy insights in ways that no single approach affords. Despite the inherent complexity of social-ecological systems and the difficulty of causal inference, the 3FIGS approach can dramatically advance our understanding of, and the evidentiary basis for, effective MPAs and other conservation initiatives.Item Open Access A typology of time-scale mismatches and behavioral interventions to diagnose and solve conservation problems.(Conserv Biol, 2016-02) Wilson, Robyn S; Hardisty, David J; Epanchin-Niell, Rebecca S; Runge, Michael C; Cottingham, Kathryn L; Urban, Dean L; Maguire, Lynn A; Hastings, Alan; Mumby, Peter J; Peters, Debra PCEcological systems often operate on time scales significantly longer or shorter than the time scales typical of human decision making, which causes substantial difficulty for conservation and management in socioecological systems. For example, invasive species may move faster than humans can diagnose problems and initiate solutions, and climate systems may exhibit long-term inertia and short-term fluctuations that obscure learning about the efficacy of management efforts in many ecological systems. We adopted a management-decision framework that distinguishes decision makers within public institutions from individual actors within the social system, calls attention to the ways socioecological systems respond to decision makers' actions, and notes institutional learning that accrues from observing these responses. We used this framework, along with insights from bedeviling conservation problems, to create a typology that identifies problematic time-scale mismatches occurring between individual decision makers in public institutions and between individual actors in the social or ecological system. We also considered solutions that involve modifying human perception and behavior at the individual level as a means of resolving these problematic mismatches. The potential solutions are derived from the behavioral economics and psychology literature on temporal challenges in decision making, such as the human tendency to discount future outcomes at irrationally high rates. These solutions range from framing environmental decisions to enhance the salience of long-term consequences, to using structured decision processes that make time scales of actions and consequences more explicit, to structural solutions aimed at altering the consequences of short-sighted behavior to make it less appealing. Additional application of these tools and long-term evaluation measures that assess not just behavioral changes but also associated changes in ecological systems are needed.Item Open Access Capacity shortfalls hinder the performance of marine protected areas globally.(Nature, 2017-03-22) Gill, David A; Mascia, Michael B; Ahmadia, Gabby N; Glew, Louise; Lester, Sarah E; Barnes, Megan; Craigie, Ian; Darling, Emily S; Free, Christopher M; Geldmann, Jonas; Holst, Susie; Jensen, Olaf P; White, Alan T; Basurto, Xavier; Coad, Lauren; Gates, Ruth D; Guannel, Greg; Mumby, Peter J; Thomas, Hannah; Whitmee, Sarah; Woodley, Stephen; Fox, Helen EMarine protected areas (MPAs) are increasingly being used globally to conserve marine resources. However, whether many MPAs are being effectively and equitably managed, and how MPA management influences substantive outcomes remain unknown. We developed a global database of management and fish population data (433 and 218 MPAs, respectively) to assess: MPA management processes; the effects of MPAs on fish populations; and relationships between management processes and ecological effects. Here we report that many MPAs failed to meet thresholds for effective and equitable management processes, with widespread shortfalls in staff and financial resources. Although 71% of MPAs positively influenced fish populations, these conservation impacts were highly variable. Staff and budget capacity were the strongest predictors of conservation impact: MPAs with adequate staff capacity had ecological effects 2.9 times greater than MPAs with inadequate capacity. Thus, continued global expansion of MPAs without adequate investment in human and financial capacity is likely to lead to sub-optimal conservation outcomes.