Browsing by Author "Muoio, Deborah M"
Results Per Page
Sort Options
Item Open Access ACLY and ACC1 Regulate Hypoxia-Induced Apoptosis by Modulating ETV4 via α-ketoglutarate.(PLoS Genet, 2015-10) Keenan, Melissa M; Liu, Beiyu; Tang, Xiaohu; Wu, Jianli; Cyr, Derek; Stevens, Robert D; Ilkayeva, Olga; Huang, Zhiqing; Tollini, Laura A; Murphy, Susan K; Lucas, Joseph; Muoio, Deborah M; Kim, So Young; Chi, Jen-TsanIn order to propagate a solid tumor, cancer cells must adapt to and survive under various tumor microenvironment (TME) stresses, such as hypoxia or lactic acidosis. To systematically identify genes that modulate cancer cell survival under stresses, we performed genome-wide shRNA screens under hypoxia or lactic acidosis. We discovered that genetic depletion of acetyl-CoA carboxylase (ACACA or ACC1) or ATP citrate lyase (ACLY) protected cancer cells from hypoxia-induced apoptosis. Additionally, the loss of ACLY or ACC1 reduced levels and activities of the oncogenic transcription factor ETV4. Silencing ETV4 also protected cells from hypoxia-induced apoptosis and led to remarkably similar transcriptional responses as with silenced ACLY or ACC1, including an anti-apoptotic program. Metabolomic analysis found that while α-ketoglutarate levels decrease under hypoxia in control cells, α-ketoglutarate is paradoxically increased under hypoxia when ACC1 or ACLY are depleted. Supplementation with α-ketoglutarate rescued the hypoxia-induced apoptosis and recapitulated the decreased expression and activity of ETV4, likely via an epigenetic mechanism. Therefore, ACC1 and ACLY regulate the levels of ETV4 under hypoxia via increased α-ketoglutarate. These results reveal that the ACC1/ACLY-α-ketoglutarate-ETV4 axis is a novel means by which metabolic states regulate transcriptional output for life vs. death decisions under hypoxia. Since many lipogenic inhibitors are under investigation as cancer therapeutics, our findings suggest that the use of these inhibitors will need to be carefully considered with respect to oncogenic drivers, tumor hypoxia, progression and dormancy. More broadly, our screen provides a framework for studying additional tumor cell stress-adaption mechanisms in the future.Item Open Access APOL1-mediated monovalent cation transport contributes to APOL1-mediated podocytopathy in kidney disease.(The Journal of clinical investigation, 2024-01) Datta, Somenath; Antonio, Brett M; Zahler, Nathan H; Theile, Jonathan W; Krafte, Doug; Zhang, Hengtao; Rosenberg, Paul B; Chaves, Alec B; Muoio, Deborah M; Zhang, Guofang; Silas, Daniel; Li, Guojie; Soldano, Karen; Nystrom, Sarah; Ferreira, Davis; Miller, Sara E; Bain, James R; Muehlbauer, Michael J; Ilkayeva, Olga; Becker, Thomas C; Hohmeier, Hans-Ewald; Newgard, Christopher B; Olabisi, Opeyemi ATwo coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity. In HEK293 cells, we demonstrated that G1-mediated Na+ import/K+ efflux triggered activation of GPCR/IP3-mediated calcium release from the ER, impaired mitochondrial ATP production, and impaired translation, which were all reversed by VX-147. In human urine-derived podocyte-like epithelial cells (HUPECs), we demonstrated that G1 caused cytotoxicity that was again reversible by VX-147. Finally, in podocytes isolated from APOL1 G1 transgenic mice, we showed that IFN-γ-mediated induction of G1 caused K+ efflux, activation of GPCR/IP3 signaling, and inhibition of translation, podocyte injury, and proteinuria, all reversed by VX-147. Together, these results establish APOL1-mediated Na+/K+ transport as the proximal driver of APOL1-mediated kidney disease.Item Open Access Carnitine Acetyltransferase and Mitochondrial Acetyl-CoA Buffering in Exercise and Metabolic Disease(2013) Seiler Hogan, SarahAcetyl-CoA holds a prominent position as the common metabolic intermediate of glucose, amino acid and fatty acid oxidation. Because acetyl-CoA fuels the tricarboxylic acid (TCA) cycle, the primary source of reducing equivalents that drives mitochondrial oxidative phosphorylation, understanding acetyl-CoA pool regulation becomes imperative to understanding mitochondrial energetics. Carnitine acetyltransferase (CrAT), a muscle-enriched mitochondrial enzyme, catalyzes the freely reversible conversion of acetyl-CoA to its membrane permeant carnitine ester, acetylcarnitine. Because CrAT has long been thought to regulate the acetyl-CoA metabolite pool, we investigated the role of CrAT in acetyl-CoA regulation. Although the biochemistry and enzymology of the CrAT reaction has been well studied, its physiological role remains unknown. Investigations herein suggest that CrAT-mediated maintenance of the mitochondrial acetyl-CoA pool is imperative for preservation of energy homeostasis. We provide compelling evidence that CrAT is critical for fine-tuning acetyl-CoA balance during the fasted to fed transition and during exercise. These studies suggest that compromised CrAT activity results in derangements in mitochondrial homeostasis.
In chapter 3, we examined the effects of obesity and lipid exposure on CrAT activity. Recent studies have shown that acetyl-CoA-mediated inhibition of pyruvate dehydrogenase (PDH), the committed step in glucose oxidation, is modulated by the CrAT enzyme. Because PDH and glucose oxidation are negatively regulated by high fat feeding and obesity, we reasoned that nutritional conditions that promote lipid availability and fat oxidation might likewise compromise CrAT activity. We report an accumulation of long chain acylcarnitines and acyl-CoAs but a decline in the acetylcarnitine/acetyl-CoA ratio in obese and diabetic rodents. This reduction in the skeletal muscle acetylcarnitine/acetyl-CoA ratio was accompanied by a decrease in CrAT specific activity, despite increased protein abundance. Exposure to long chain acyl-CoAs in vitro demonstrated that palmitoyl-CoA acts as a mixed model inhibitor of CrAT. Furthermore, primary human skeletal muscle myocytes exposed to fatty acid and or CPT1b overexpression had elevated long chain acylcarnitines but decreased production and efflux of CrAT-derived short chain acylcarnitines. These data suggest that exposure to fatty acids in obesity and diabetes can counter-regulate the CrAT enzyme leading to decreased activity.
Alternatively, chapter 4 addresses the importance of acetyl-CoA buffering during exercise and suggests that a deficit in CrAT activity leads to fatigue. Because CrAT is highly expressed in tissues specifically designed for work and because acetylcarnitine, the primary product of the CrAT reaction, is increased during contraction, we reasoned that CrAT could play an important role in exercise. To investigate this possibility, we employed exercise intervention and ex-vivo analysis on a genetically novel mouse model of skeletal muscle CrAT deficiency (CrATSM-/-). Though resting acetyl-CoA levels were elevated in CrATSM-/- mice, these levels dropped significantly after intense exercise while acetylcarnitine content followed the opposite pattern. This contraction-induced acetyl-CoA deficit in CrATSM-/- mice was coupled with compromised performance and diminished whole body glucose oxidation during high intensity exercise. These results imply that working muscles clear and consume acetylcarnitine in order to maintain acetyl-CoA buffering during exercise. Importantly, provision of acetylcarnitine enhanced force generation, delayed fatigue and improved mitochondrial energetics in muscles from CrATfl/fl controls but not CrATSM-/- littermates, emphasizing the importance of acetyl-CoA maintenance. In aggregate, these data demonstrate a critical role for CrAT-mediated acetyl-CoA buffering in exercise tolerance and suggest its involvement in energy metabolism during skeletal muscle contraction and fatigue. These findings could have important clinical implications for individuals with muscle weakness and fatigue due to multiple conditions, such as peripheral vascular or cardiometabolic disease.
In summary, data herein emphasize the role of CrAT in regulation of mitochondrial acetyl-CoA pool. We demonstrate that CrAT is critical for fine-tuning acetyl-CoA balance both during the fasted to fed transition and during exercise. These data suggest that a deficit in CrAT activity leads to glucose intolerance and exercise fatigue. We examine these studies and suggest future areas of study.
Item Open Access Chemotherapeutic drug screening in 3D-Bioengineered human myobundles provides insight into taxane-induced myotoxicities.(iScience, 2022-10) Torres, Maria J; Zhang, Xu; Slentz, Dorothy H; Koves, Timothy R; Patel, Hailee; Truskey, George A; Muoio, Deborah MTwo prominent frontline breast cancer (BC) chemotherapies commonly used in combination, doxorubicin (DOX) and docetaxel (TAX), are associated with long-lasting cardiometabolic and musculoskeletal side effects. Whereas DOX has been linked to mitochondrial dysfunction, mechanisms underlying TAX-induced myotoxicities remain uncertain. Here, the metabolic and functional consequences of TAX ± DOX were investigated using a 3D-bioengineered model of adult human muscle and a drug dosing regimen designed to resemble in vivo pharmacokinetics. DOX potently reduced mitochondrial respiratory capacity, 3D-myobundle size, and contractile force, whereas TAX-induced acetylation and remodeling of the microtubule network led to perturbations in glucose uptake, mitochondrial respiratory sensitivity, and kinetics of fatigue, without compromising tetanic force generation. These findings suggest TAX-induced remodeling of the microtubule network disrupts glucose transport and respiratory control in skeletal muscle and thereby have important clinical implications related to the cardiometabolic health and quality of life of BC patients and survivors.Item Open Access Desmin interacts with STIM1 and coordinates Ca2+ signaling in skeletal muscle.(JCI insight, 2021-09) Zhang, Hengtao; Bryson, Victoria Graham; Wang, Chaojian; Li, TianYu; Kerr, Jaclyn P; Wilson, Rebecca; Muoio, Deborah M; Bloch, Robert J; Ward, Christopher; Rosenberg, Paul BStromal interaction molecule 1 (STIM1), the sarcoplasmic reticulum (SR) transmembrane protein, activates store-operated Ca2+ entry (SOCE) in skeletal muscle and, thereby, coordinates Ca2+ homeostasis, Ca2+-dependent gene expression, and contractility. STIM1 occupies space in the junctional SR membrane of the triads and the longitudinal SR at the Z-line. How STIM1 is organized and is retained in these specific subdomains of the SR is unclear. Here, we identified desmin, the major type III intermediate filament protein in muscle, as a binding partner for STIM1 based on a yeast 2-hybrid screen. Validation of the desmin-STIM1 interaction by immunoprecipitation and immunolocalization confirmed that the CC1-SOAR domains of STIM1 interact with desmin to enhance STIM1 oligomerization yet limit SOCE. Based on our studies of desmin-KO mice, we developed a model wherein desmin connected STIM1 at the Z-line in order to regulate the efficiency of Ca2+ refilling of the SR. Taken together, these studies showed that desmin-STIM1 assembles a cytoskeletal-SR connection that is important for Ca2+ signaling in skeletal muscle.Item Open Access Disruption of STIM1-mediated Ca2+ sensing and energy metabolism in adult skeletal muscle compromises exercise tolerance, proteostasis, and lean mass.(Molecular metabolism, 2022-03) Wilson, Rebecca J; Lyons, Scott P; Koves, Timothy R; Bryson, Victoria G; Zhang, Hengtao; Li, TianYu; Crown, Scott B; Ding, Jin-Dong; Grimsrud, Paul A; Rosenberg, Paul B; Muoio, Deborah MObjective
Stromal interaction molecule 1 (STIM1) is a single-pass transmembrane endoplasmic/sarcoplasmic reticulum (E/SR) protein recognized for its role in a store operated Ca2+ entry (SOCE), an ancient and ubiquitous signaling pathway. Whereas STIM1 is known to be indispensable during development, its biological and metabolic functions in mature muscles remain unclear.Methods
Conditional and tamoxifen inducible muscle STIM1 knock-out mouse models were coupled with multi-omics tools and comprehensive physiology to understand the role of STIM1 in regulating SOCE, mitochondrial quality and bioenergetics, and whole-body energy homeostasis.Results
This study shows that STIM1 is abundant in adult skeletal muscle, upregulated by exercise, and is present at SR-mitochondria interfaces. Inducible tissue-specific deletion of STIM1 (iSTIM1 KO) in adult muscle led to diminished lean mass, reduced exercise capacity, and perturbed fuel selection in the settings of energetic stress, without affecting whole-body glucose tolerance. Proteomics and phospho-proteomics analyses of iSTIM1 KO muscles revealed molecular signatures of low-grade E/SR stress and broad activation of processes and signaling networks involved in proteostasis.Conclusion
These results show that STIM1 regulates cellular and mitochondrial Ca2+ dynamics, energy metabolism and proteostasis in adult skeletal muscles. Furthermore, these findings provide insight into the pathophysiology of muscle diseases linked to disturbances in STIM1-dependent Ca2+ handling.Item Open Access Exploring the Role of Mitochondrial Bioenergetics and Metabolism in Heart Failure(2020) Davidson, Michael ThomasHeart failure is a worldwide public health problem with substantial clinical burden and economic costs. In the progression into failure, the heart undergoes dramatic alterations in mitochondrial fuel metabolism and bioenergetics. As such, there is considerable interest in the delineation of regulatory events involved in the metabolic dysfunction of heart failure. Previous collaborative work identified three metabolic signatures associated with early stage heart failure: 1) accumulation of acylcarnitine metabolites; 2) mitochondrial hyperacetylation; and 3) elevated ketone catabolism. The goal of this dissertation was to explore the role of these metabolic signatures in the pathogenesis of heart failure.
Tissue accumulation of acylcarnitine metabolites is characteristic of mitochondrial dysfunction and indicative of incomplete β-oxidation. This occurs when a large portion of the fatty acids (i.e., acyl groups) within the mitochondria are not fully catabolized and the resulting intermediates are transferred to carnitine esters, enabling the traversal of biological membranes and departure from the mitochondrial matrix.
Nϵ-acetylation in the mitochondrial matrix is a non-enzymatic, post-translational modification (PTM) that spontaneously arises from the relatively basic pH and abundance of acetyl-CoA. Accumulation of this PTM has been observed in other tissues and disease states with evidence suggesting it impairs mitochondrial metabolism and causes dysfunction. However, convincing studies are lacking to establish a direct causal connection between dysfunction and acetylation. To address this shortcoming, a novel assay platform for the comprehensive assessment of mitochondrial bioenergetic transduction was developed and validated. Next, we generated and validated a novel mouse model of cardiac mitochondrial hyperacetylation and utilized the bioenergetic assay platform to test the hypothesis that it causes metabolic perturbations. Surprisingly, these hyperacetylated mitochondria exhibited almost no deficits in mitochondrial oxidative metabolism. To determine if hyperacetylation causes mitochondrial dysfunction in vivo under pathologic stimuli, the mouse model and littermate controls were subjected to transaortic constriction, a surgical method to induce pressure-overload heart failure. The hyperacetylated animals did not exhibit enhanced sensitivity toward cardiac dysfunction relative controls. With these results, we concluded that mitochondrial hyperacetylation does not contribute to the pathogenesis of heart failure.
Elevated ketone catabolism was observed in early stage failing hearts. Through a series of murine and canine heart failure models, ketone catabolism was shown to be adaptive in response to pathological stress. Additionally, the mitochondrial bioenergetic assay platform was applied to cardiac mitochondria under substrate limited-conditions. These results indicate that ketone catabolism improves bioenergetic efficiency under constraints which mimic the failing heart. With these results, we conclude ketone catabolism is an important metabolic defense in response to the dysfunction of the failing heart.
Item Open Access Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis.(PLoS Genet, 2015-11) Kraus, William E; Muoio, Deborah M; Stevens, Robert; Craig, Damian; Bain, James R; Grass, Elizabeth; Haynes, Carol; Kwee, Lydia; Qin, Xuejun; Slentz, Dorothy H; Krupp, Deidre; Muehlbauer, Michael; Hauser, Elizabeth R; Gregory, Simon G; Newgard, Christopher B; Shah, Svati HLevels of certain circulating short-chain dicarboxylacylcarnitine (SCDA), long-chain dicarboxylacylcarnitine (LCDA) and medium chain acylcarnitine (MCA) metabolites are heritable and predict cardiovascular disease (CVD) events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490), we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER) stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1) These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6-2.3x10-10). Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2). Expression quantitative trait loci (eQTL) pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS) arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk.Item Open Access Molecular alterations in skeletal muscle in rheumatoid arthritis are related to disease activity, physical inactivity, and disability.(Arthritis Res Ther, 2017-01-23) Huffman, Kim M; Jessee, Ryan; Andonian, Brian; Davis, Brittany N; Narowski, Rachel; Huebner, Janet L; Kraus, Virginia B; McCracken, Julie; Gilmore, Brian F; Tune, K Noelle; Campbell, Milton; Koves, Timothy R; Muoio, Deborah M; Hubal, Monica J; Kraus, William EBACKGROUND: To identify molecular alterations in skeletal muscle in rheumatoid arthritis (RA) that may contribute to ongoing disability in RA. METHODS: Persons with seropositive or erosive RA (n = 51) and control subjects matched for age, gender, race, body mass index (BMI), and physical activity (n = 51) underwent assessment of disease activity, disability, pain, physical activity and thigh muscle biopsies. Muscle tissue was used for measurement of pro-inflammatory markers, transcriptomics, and comprehensive profiling of metabolic intermediates. Groups were compared using mixed models. Bivariate associations were assessed with Spearman correlation. RESULTS: Compared to controls, patients with RA had 75% greater muscle concentrations of IL-6 protein (p = 0.006). In patients with RA, muscle concentrations of inflammatory markers were positively associated (p < 0.05 for all) with disease activity (IL-1β, IL-8), disability (IL-1β, IL-6), pain (IL-1β, TNF-α, toll-like receptor (TLR)-4), and physical inactivity (IL-1β, IL-6). Muscle cytokines were not related to corresponding systemic cytokines. Prominent among the gene sets differentially expressed in muscles in RA versus controls were those involved in skeletal muscle repair processes and glycolytic metabolism. Metabolic profiling revealed 46% higher concentrations of pyruvate in muscle in RA (p < 0.05), and strong positive correlation between levels of amino acids involved in fibrosis (arginine, ornithine, proline, and glycine) and disability (p < 0.05). CONCLUSION: RA is accompanied by broad-ranging molecular alterations in skeletal muscle. Analysis of inflammatory markers, gene expression, and metabolic intermediates linked disease-related disruptions in muscle inflammatory signaling, remodeling, and metabolic programming to physical inactivity and disability. Thus, skeletal muscle dysfunction might contribute to a viscous cycle of RA disease activity, physical inactivity, and disability.Item Open Access Rheumatoid arthritis T cell and muscle oxidative metabolism associate with exercise-induced changes in cardiorespiratory fitness.(Scientific reports, 2022-05) Andonian, Brian J; Koss, Alec; Koves, Timothy R; Hauser, Elizabeth R; Hubal, Monica J; Pober, David M; Lord, Janet M; MacIver, Nancie J; St Clair, E William; Muoio, Deborah M; Kraus, William E; Bartlett, David B; Huffman, Kim MRheumatoid arthritis (RA) T cells drive autoimmune features via metabolic reprogramming that reduces oxidative metabolism. Exercise training improves cardiorespiratory fitness (i.e., systemic oxidative metabolism) and thus may impact RA T cell oxidative metabolic function. In this pilot study of RA participants, we took advantage of heterogeneous responses to a high-intensity interval training (HIIT) exercise program to identify relationships between improvements in cardiorespiratory fitness with changes in peripheral T cell and skeletal muscle oxidative metabolism. In 12 previously sedentary persons with seropositive RA, maximal cardiopulmonary exercise tests, fasting blood, and vastus lateralis biopsies were obtained before and after 10 weeks of HIIT. Following HIIT, improvements in RA cardiorespiratory fitness were associated with changes in RA CD4 + T cell basal and maximal respiration and skeletal muscle carnitine acetyltransferase (CrAT) enzyme activity. Further, changes in CD4 + T cell respiration were associated with changes in naïve CD4 + CCR7 + CD45RA + T cells, muscle CrAT, and muscle medium-chain acylcarnitines and fat oxidation gene expression profiles. In summary, modulation of cardiorespiratory fitness and molecular markers of skeletal muscle oxidative metabolism during exercise training paralleled changes in T cell metabolism. Exercise training that improves RA cardiorespiratory fitness may therefore be valuable in managing pathologically related immune and muscle dysfunction.Trial registration: ClinicalTrials.gov, NCT02528344. Registered on 19 August 2015.Item Open Access Role of Thioredoxin-Interacting Protein (TXNIP) in Regulating Redox Balance and Mitochondrial Function in Skeletal Muscle(2013) DeBalsi, Karen LynnThe Muoio lab studies the interplay between lipid whole body energy balance,
mitochondrial function and insulin action in skeletal muscle. Data from our lab suggests that lipid-induced insulin resistance in skeletal muscle may stem from excessive incomplete oxidation of fatty acids, which occurs when high rates of β-oxidation exceed TCA cycle flux (Koves et al., 2005; Koves et al., 2008). Most notably, we have shown that mice with a genetically engineered decrease in mitochondrial uptake and oxidation of fatty acids are protected against diet-induced insulin resistance (Koves et al., 2008). This
suggests that an excessive and/or inappropriate metabolic burden on muscle
mitochondria provokes insulin resistance. Our working model predicts that: 1) high rates of incomplete β-oxidation reflect a state of ”mitochondrial stress,” and 2) that energy-overloaded mitochondria generate a yet unidentified signal that mediates insulin
resistance. One possibility is that this putative mitochondrial-derived signal stems from redox imbalance and disruptions in redox sensitive signaling cascades. Therefore, we are interested in identifying molecules that link redox balance, mitochondrial function and insulin action in skeletal muscle. The work described herein identifies thioredoxin-interacting protein (TXNIP) as an attractive candidate that regulates both glucose homeostasis and mitochondrial fuel selection.
TXNIP is a redox sensitive, α-arrestin protein that has been implicated as a negative regulator of glucose control. Mounting evidence suggested that TXNIP might play a key role in regulating mitochondrial function; however, the molecular nature of this relationship was poorly defined. Previous studies in TXNIP knockout mice reported that deficiency of this protein compromises oxidative metabolism, increases glycolytic activity and promotes production of reactive oxygen species (ROS), while also affording protection against insulin resistance. Therefore, we hypothesized that TXNIP might serve as a nutrient sensor that couples cellular redox status to the adjustments in mitochondrial function. We tested this hypothesis by exploiting loss of function models to evaluate the effects of TXNIP deficiency on mitochondrial metabolism and respiratory function.
In chapter 3, we comprehensively evaluated oxidative metabolism, substrate
selection, respiratory kinetics and redox balance in mice with total body and skeletal muscle-specific TXNIP deficiency. Targeted metabolomics, comprehensive bioenergetics analysis, whole-body respirometry and conventional biochemistry showed that TXNIP deficiency results in reduced exercise tolerance with marked impairments in skeletal muscle oxidative metabolism. The deficits in substrate oxidation were not secondary to decreased mitochondrial mass or increased H2O2 emitting potential from the electron transport chain. Instead, the activities of several mitochondrial dehydrogenases involved in branched-chain amino acid and ketone catabolism, the tricarboxylic acid (TCA) cycle and fatty acid β-oxidation were significantly diminished in TXNIP null muscles. These deficits in mitochondrial enzyme activities were accompanied by decreased protein abundance without changes in mRNA expression. Taken together, these results suggest that in skeletal muscle TXNIP plays an essential role in maintaining protein synthesis and/or stability of a subset of mitochondrial dehydrogenase enzymes that permit muscle use of alternate fuels under conditions of glucose deprivation.
Based on these conclusions, we questioned whether additional regulatory
mechanisms could contribute to the reduced oxidative metabolism in the absence ofTXNIP. Several metabolic enzymes of the TCA cycle have been shown to be redox-sensitive protein targets regulated by the thioredoxin (TRX1/TRX2) and glutathione (GSH) redox-mediated circuits. TXNIP has been shown to respond to oxidative stress by shuttling to the mitochondria where it binds to TRX2 and/or other proteins, thus affecting downstream signaling pathways, such as the apoptotic cascade. Therefore, we speculated whether there was a role for redox imbalance in mediating the mitochondrial phenotype of the TXNIP knockout (TKO) mice. In chapter 4, we present preliminary evidence that increased glucose uptake promotes non-mitochondrial ROS production, causing a shift in redox balance, decreased GSH/GSSG, and S-glutathionylation of α-ketoglutarate dehydrogenase (&alpha-KGD). This post-translational modification protects the protein from permanent oxidative damage, but at the cost of reversible loss of activity and subsequent disruption of TCA cycle flux that contributes, in part, to the diminished oxidative metabolism observed in the TXNIP deficient mice.
In aggregate, this work sheds new light onto the physiological role of TXNIP in
skeletal muscle as it pertains to substrate metabolism and fuel switching in response to nutrient availability. This work has important implications for metabolic diseases such as obesity and type 2 diabetes, which are characterized by marked disruptions in fuel selection.