Browsing by Author "Murtha, Amy"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Levels of Urinary Metabolites of Organophosphate Flame Retardants, TDCIPP, and TPHP, in Pregnant Women in Shanghai.(J Environ Public Health, 2016) Feng, Liping; Ouyang, Fengxiu; Liu, Liangpo; Wang, Xu; Wang, Xia; Li, Yi-Ju; Murtha, Amy; Shen, Heqing; Zhang, Junfeng; Zhang, Jun JimFlame retardants are widely used in consumer products to reduce their flammability. Previously used flame retardants have been sequentially banned due to their environmental and human toxicity. Currently, tris(1,3-dichloropropyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) are among the most commonly used flame retardants. TDCIPP and TPHP are reproductive toxins and have carcinogenic, neurotoxic, and endocrine-disrupting properties. Although high levels of TDCIPP and TPHP have been found in drinking water, seawater, and office air in China, data regarding human exposure are lacking. In this study, we assessed the level of urinary TPHP and TDCIPP metabolites (DPHP and BDCIPP, resp.) in a cohort of pregnant women (N = 23) from Shanghai, China, using liquid chromatography-tandem mass spectrometry. DPHP were detected in 100% urine samples, while only four urine samples had detectable level of BDCIPP in this cohort (17% detected). Geometric means of DPHP and BDCIPP concentrations were 1.1 ng/mL (interquartile range [IQR]: 0.6, 1.5 ng/mL) and 1.2 ng/mL (IQR: 0.6, 2.2 ng/mL), respectively. In this small cohort, urinary DPHP and BDCIPP levels were not significantly correlated with miscarriages, neonatal birthweight, gestational diabetes, or maternal age. These data suggest that exposure to TPHP is widespread, and they demonstrate the feasibility of using urinary biomarkers to measure exposures to modern flame-retardant chemicals.Item Open Access Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort.(BMC medicine, 2013-02-06) Soubry, Adelheid; Schildkraut, Joellen M; Murtha, Amy; Wang, Frances; Huang, Zhiqing; Bernal, Autumn; Kurtzberg, Joanne; Jirtle, Randy L; Murphy, Susan K; Hoyo, CathrineBackground
Data from epidemiological and animal model studies suggest that nutrition during pregnancy may affect the health status of subsequent generations. These transgenerational effects are now being explained by disruptions at the level of the epigenetic machinery. Besides in vitro environmental exposures, the possible impact on the reprogramming of methylation profiles at imprinted genes at a much earlier time point, such as during spermatogenesis or oogenesis, has not previously been considered. In this study, our aim was to determine associations between preconceptional obesity and DNA methylation profiles in the offspring, particularly at the differentially methylated regions (DMRs) of the imprinted Insulin-like Growth Factor 2 (IGF2) gene.Methods
We examined DNA from umbilical cord blood leukocytes from 79 newborns, born between July 2005 and November 2006 at Duke University Hospital, Durham, NC. Their mothers participated in the Newborn Epigenetics Study (NEST) during pregnancy. Parental characteristics were obtained via standardized questionnaires and medical records. DNA methylation patterns at two DMRs were analyzed by bisulfite pyrosequencing; one DMR upstream of IGF2 (IGF2 DMR), and one DMR upstream of the neighboring H19 gene (H19 DMR). Multiple regression models were used to determine potential associations between the offspring's DNA methylation patterns and parental obesity before conception. Obesity was defined as body mass index (BMI) ≥30 kg/m².Results
Hypomethylation at the IGF2 DMR was associated with paternal obesity. Even after adjusting for several maternal and newborn characteristics, we observed a persistent inverse association between DNA methylation in the offspring and paternal obesity (β-coefficient was -5.28, P = 0.003). At the H19 DMR, no significant associations were detected between methylation patterns and paternal obesity. Our data suggest an increase in DNA methylation at the IGF2 and H19 DMRs among newborns from obese mothers, but a larger study is warranted to further explore the potential effects of maternal obesity or lifestyle on the offspring's epigenome.Conclusions
While our small sample size is limited, our data indicate a preconceptional impact of paternal obesity on the reprogramming of imprint marks during spermatogenesis. Given the biological importance of imprinting fidelity, our study provides evidence for transgenerational effects of paternal obesity that may influence the offspring's future health status.