Browsing by Author "Newgard, Christopher B"
Results Per Page
Sort Options
Item Open Access APOL1-mediated monovalent cation transport contributes to APOL1-mediated podocytopathy in kidney disease.(The Journal of clinical investigation, 2024-01) Datta, Somenath; Antonio, Brett M; Zahler, Nathan H; Theile, Jonathan W; Krafte, Doug; Zhang, Hengtao; Rosenberg, Paul B; Chaves, Alec B; Muoio, Deborah M; Zhang, Guofang; Silas, Daniel; Li, Guojie; Soldano, Karen; Nystrom, Sarah; Ferreira, Davis; Miller, Sara E; Bain, James R; Muehlbauer, Michael J; Ilkayeva, Olga; Becker, Thomas C; Hohmeier, Hans-Ewald; Newgard, Christopher B; Olabisi, Opeyemi ATwo coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity. In HEK293 cells, we demonstrated that G1-mediated Na+ import/K+ efflux triggered activation of GPCR/IP3-mediated calcium release from the ER, impaired mitochondrial ATP production, and impaired translation, which were all reversed by VX-147. In human urine-derived podocyte-like epithelial cells (HUPECs), we demonstrated that G1 caused cytotoxicity that was again reversible by VX-147. Finally, in podocytes isolated from APOL1 G1 transgenic mice, we showed that IFN-γ-mediated induction of G1 caused K+ efflux, activation of GPCR/IP3 signaling, and inhibition of translation, podocyte injury, and proteinuria, all reversed by VX-147. Together, these results establish APOL1-mediated Na+/K+ transport as the proximal driver of APOL1-mediated kidney disease.Item Open Access Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events.(Circ Cardiovasc Genet, 2010-04) Shah, Svati H; Bain, James R; Muehlbauer, Michael J; Stevens, Robert D; Crosslin, David R; Haynes, Carol; Dungan, Jennifer; Newby, L Kristin; Hauser, Elizabeth R; Ginsburg, Geoffrey S; Newgard, Christopher B; Kraus, William EBACKGROUND: Molecular tools may provide insight into cardiovascular risk. We assessed whether metabolites discriminate coronary artery disease (CAD) and predict risk of cardiovascular events. METHODS AND RESULTS: We performed mass-spectrometry-based profiling of 69 metabolites in subjects from the CATHGEN biorepository. To evaluate discriminative capabilities of metabolites for CAD, 2 groups were profiled: 174 CAD cases and 174 sex/race-matched controls ("initial"), and 140 CAD cases and 140 controls ("replication"). To evaluate the capability of metabolites to predict cardiovascular events, cases were combined ("event" group); of these, 74 experienced death/myocardial infarction during follow-up. A third independent group was profiled ("event-replication" group; n=63 cases with cardiovascular events, 66 controls). Analysis included principal-components analysis, linear regression, and Cox proportional hazards. Two principal components analysis-derived factors were associated with CAD: 1 comprising branched-chain amino acid metabolites (factor 4, initial P=0.002, replication P=0.01), and 1 comprising urea cycle metabolites (factor 9, initial P=0.0004, replication P=0.01). In multivariable regression, these factors were independently associated with CAD in initial (factor 4, odds ratio [OR], 1.36; 95% CI, 1.06 to 1.74; P=0.02; factor 9, OR, 0.67; 95% CI, 0.52 to 0.87; P=0.003) and replication (factor 4, OR, 1.43; 95% CI, 1.07 to 1.91; P=0.02; factor 9, OR, 0.66; 95% CI, 0.48 to 0.91; P=0.01) groups. A factor composed of dicarboxylacylcarnitines predicted death/myocardial infarction (event group hazard ratio 2.17; 95% CI, 1.23 to 3.84; P=0.007) and was associated with cardiovascular events in the event-replication group (OR, 1.52; 95% CI, 1.08 to 2.14; P=0.01). CONCLUSIONS: Metabolite profiles are associated with CAD and subsequent cardiovascular events.Item Open Access Broad Remodeling of the Acetylproteome by SIRT3 Manipulation Fails to Affect Insulin Secretion or β-cell Metabolism in the Absence of Dietary Overnutrition(2018) Peterson, Brett StevenSIRT3 is an NAD+-dependent mitochondrial protein deacetylase purported to influence cellular and systemic metabolism through modulation of the mitochondrial acetylproteome. Fuel-stimulated insulin secretion from pancreatic islets involves mitochondrial metabolism and might be susceptible to SIRT3-mediated effects. To investigate this idea, we used CRISPR/Cas9 technology to obtain complete SIRT3 knockout in the INS-1 832/13 insulinoma cell line. In the context of this SIRT3 knockout cell line, we re-expressed wild-type SIRT3, β-Galactosidase, or one of three enzymatically inactive mutant forms of SIRT3 to generate lines representing a wide range of SIRT3 expression and mitochondrial protein deacetylase activity. We performed large-scale acetylproteome profiling by mass spectrometry on the different lines, and observed wide-spread, SIRT3-dependent changes in acetylation of enzymes involved in fatty acid oxidation, the TCA cycle, and the electron transport chain. Remarkably, despite these broad changes, the cell lines had indistinguishable insulin secretion responses to glucose or pyruvate, and exhibited no differences in function or viability in response to metabolic or ER stress-inducing agents. Moreover, metabolomic profiling revealed that, when compared to SIRT3-null cell lines, expression of wild-type SIRT3 does not result in appreciable changes in a host of organic acid, amino acid or fatty acid-derived acylcarnitine metabolites during glucose stimulation.
We also studied mice with global SIRT3 knockout (KO) fed a standard chow (STD) or high-fat/high-sucrose (HFHS) diet. Importantly, we performed these studies in the C57Bl/6J background in which we replaced the mutant allele of nicotinamide nucleotide transhydrogenase (NNT) present in the “J” substrain, with the wild-type allele in order to restore endogenous NNT function. SIRT3 KO and wild-type (WT) mice fed a STD diet exhibited no differences in insulin secretion during oral or IP glucose tolerance tests, and the function of islets isolated from these mice was indistinguishable in islet perifusion studies conducted with a broad array of secretagogues. Only when chronically fed a HFHS diet did SIRT3 KO animals exhibit a modest impairment in insulin secretion, but without an effect on glycemic control. Our broad conclusion is that major changes in mitochondrial protein acetylation in response to manipulation of SIRT3 are not sufficient to cause changes in islet function or metabolism. However, under conditions of chronic nutritional stress (feeding of a HFHS diet for 12 weeks), a negative effect on function appears, suggesting that islets are more susceptible to nutrition-induced factors (oxidative stress, local cytokine production, etc.) when SIRT3 is absent. Further studies will be required to identify factors that may interact with SIRT3 deficiency and mitochondrial protein hyperacetylation to increase the risk of -cell dysfunction.
Item Open Access Caloric restriction alters the metabolic response to a mixed-meal: results from a randomized, controlled trial.(PLoS One, 2012) Huffman, Kim M; Redman, Leanne M; Landerman, Lawrence R; Pieper, Carl F; Stevens, Robert D; Muehlbauer, Michael J; Wenner, Brett R; Bain, James R; Kraus, Virginia B; Newgard, Christopher B; Ravussin, Eric; Kraus, William EOBJECTIVES: To determine if caloric restriction (CR) would cause changes in plasma metabolic intermediates in response to a mixed meal, suggestive of changes in the capacity to adapt fuel oxidation to fuel availability or metabolic flexibility, and to determine how any such changes relate to insulin sensitivity (S(I)). METHODS: Forty-six volunteers were randomized to a weight maintenance diet (Control), 25% CR, or 12.5% CR plus 12.5% energy deficit from structured aerobic exercise (CR+EX), or a liquid calorie diet (890 kcal/d until 15% reduction in body weight)for six months. Fasting and postprandial plasma samples were obtained at baseline, three, and six months. A targeted mass spectrometry-based platform was used to measure concentrations of individual free fatty acids (FFA), amino acids (AA), and acylcarnitines (AC). S(I) was measured with an intravenous glucose tolerance test. RESULTS: Over three and six months, there were significantly larger differences in fasting-to-postprandial (FPP) concentrations of medium and long chain AC (byproducts of FA oxidation) in the CR relative to Control and a tendency for the same in CR+EX (CR-3 month P = 0.02; CR-6 month P = 0.002; CR+EX-3 month P = 0.09; CR+EX-6 month P = 0.08). After three months of CR, there was a trend towards a larger difference in FPP FFA concentrations (P = 0.07; CR-3 month P = 0.08). Time-varying differences in FPP concentrations of AC and AA were independently related to time-varying S(I) (P<0.05 for both). CONCLUSIONS: Based on changes in intermediates of FA oxidation following a food challenge, CR imparted improvements in metabolic flexibility that correlated with improvements in S(I). TRIAL REGISTRATION: ClinicalTrials.gov NCT00099151.Item Open Access Creation of Versatile Cloning Platforms for Transgene Expression and Epigenome Editing and Their Application to Pancreatic Islet Biology(2018) Haldeman, Jonathan MarkInsulin secreting β-cells within the pancreatic islets of Langerhans are vital to maintaining glycemic control. β-cell functional mass is lost during the progression to both Type 1 and Type 2 diabetes mellitus, resulting in hyperglycemia. Therefore, a major goal of diabetes research is to uncover pathways that can be exploited to induce β-cell replication while simultaneously maintaining β-cell function.
We previously reported that adenovirus-mediated overexpression of the transcription factor PDX1 is sufficient to induce β-cell replication, but underlying mechanisms remain to be resolved. Using statistical modeling, we identified the miR-17 family, a member of the miR17~92 miRNA cluster, as a candidate regulator of the PDX1-gene network. We show that PDX1 can directly regulate the MIR17HG promoter, the first example of β-cell specific regulation for this important miRNA cluster. Furthermore, the miR17~92 target PTEN is reduced in PDX1-overexpressing β-cells, and chemical inhibition of PTEN potentiates PDX1-mediated β-cell replication, supportive of the presence of a PDX1/miR17~92/PTEN regulatory node.
Recombinant adenovirus approaches pioneered by our laboratory have been the main method of genetic manipulation of primary islets in culture since 1994. Whereas adenovirus vectors have proved useful in an otherwise difficult model system, virus construction, especially for cell-type specific applications, is still laborious and time-consuming. To overcome this, we have created a new modular cloning system (pMVP) that allows a gene of interest to be rapidly recombined in the context of an array of promoters, N- or C-terminal epitope tags, inducible gene expression modalities, and/or fluorescent reporters, into 18 custom destination vectors, including adenovirus, expression plasmid, lentivirus, and Sleeping Beauty transposon, thus, permitting the creation of > 8000 unique vector permutations. Multiple features of this new vector platform, including cell type-specific and inducible control of gene expression, were validated in the setting of pancreatic islets and other cellular contexts. Furthermore, using pMVP as a foundation, we also developed an S. aureus dCas9 epigenetic engineering platform, pMAGIC, that enables the packaging of 3 guide RNAs with Sa-dCas9 fused to one of five epigenetic modifiers into a single vector. Using pMAGIC-derived adenoviruses, we functionally validated the regulation of PDX1 by Area IV, a cross-species conserved enhancer, through LSD1-mediated epigenetic modification in both INS1 832/13 cells and primary rat pancreatic islets.
In sum, my work has uncovered novel information about the role of PDX1 in regulation of the miR17~92 miRNA cluster in pancreatic islet cells. In an effort to contribute more broadly to our laboratory’s pancreatic islet research efforts, I also designed and built the pMVP and pMAGIC systems for efficient generation of purpose-built, customized vectors for manipulation of gene expression in islets and other cell types, including via targeted epigenetic modification of putative regulatory elements within their native chromatin context. Development of this novel vector platform facilitated additional discoveries about the role of Area IV in control of PDX1 expression in islet β-cells.
Item Open Access Dietary Patterns among Asian Indians Living in the United States Have Distinct Metabolomic Profiles That Are Associated with Cardiometabolic Risk.(The Journal of nutrition, 2018-07) Bhupathiraju, Shilpa N; Guasch-Ferré, Marta; Gadgil, Meghana D; Newgard, Christopher B; Bain, James R; Muehlbauer, Michael J; Ilkayeva, Olga R; Scholtens, Denise M; Hu, Frank B; Kanaya, Alka M; Kandula, Namratha RRecent studies, primarily in non-Hispanic whites, suggest that dietary patterns have distinct metabolomic signatures that may influence disease risk. However, evidence in South Asians, a group with unique dietary patterns and a high prevalence of cardiometabolic risk, is lacking.We investigated the metabolomic profiles associated with 2 distinct dietary patterns among a sample of Asian Indians living in the United States. We also examined the cross-sectional associations between metabolomic profiles and cardiometabolic risk markers.We used cross-sectional data from 145 Asian Indians, aged 45-79 y, in the Metabolic Syndrome and Atherosclerosis in South Asians Living in America (MASALA) pilot study. Metabolomic profiles were measured from fasting serum samples. Usual diet was assessed by using a validated food-frequency questionnaire. We used principal components analysis to derive dietary and metabolomic patterns. We used adjusted general linear regression models to examine associations between dietary patterns, individual food groups, metabolite patterns, and cardiometabolic risk markers.We observed 2 major principal components or metabolite clusters, the first comprised primarily of medium- to long-chain acylcarnitines (metabolite pattern 1) and the second characterized by branched-chain amino acids, aromatic amino acids, and short-chain acylcarnitines (metabolite pattern 2). A "Western/nonvegetarian" pattern was significantly and positively associated with metabolite pattern 2 (all participants: β ± SE = 0.180 ± 0.090, P = 0.05; participants without type 2 diabetes: β ± SE = 0.323 ± 0.090, P = 0.0005). In all participants, higher scores on metabolite pattern 2 were adversely associated with measures of glycemia (fasting insulin: β ± SE = 2.91 ± 1.29, P = 0.03; 2-h insulin: β ± SE = 22.1 ± 10.3, P = 0.03; homeostasis model assessment of insulin resistance: β ± SE = 0.94 ± 0.42, P = 0.03), total adiponectin (β ± SE = -1.46 ± 0.47, P = 0.002), lipids (total cholesterol: β ± SE = 7.51 ± 3.45, P = 0.03; triglycerides: β ± SE = 14.4 ± 6.67, P = 0.03), and a radiographic measure of hepatic fat (liver-to-spleen attenuation ratio: β ± SE = -0.83 ± 0.42, P = 0.05).Our findings suggest that a "Western/nonvegetarian" dietary pattern is associated with a metabolomic profile that is related to an adverse cardiometabolic profile in Asian Indians. Public health efforts to reduce cardiometabolic disease burden in this high-risk group should focus on consuming a healthy plant-based diet.Item Open Access Exercise-induced changes in metabolic intermediates, hormones, and inflammatory markers associated with improvements in insulin sensitivity.(Diabetes Care, 2011-01) Huffman, Kim M; Slentz, Cris A; Bateman, Lori A; Thompson, Dana; Muehlbauer, Michael J; Bain, James R; Stevens, Robert D; Wenner, Brett R; Kraus, Virginia Byers; Newgard, Christopher B; Kraus, William EOBJECTIVE: To understand relationships between exercise training-mediated improvements in insulin sensitivity (S(I)) and changes in circulating concentrations of metabolic intermediates, hormones, and inflammatory mediators. RESEARCH DESIGN AND METHODS: Targeted mass spectrometry and enzyme-linked immunosorbent assays were used to quantify metabolic intermediates, hormones, and inflammatory markers at baseline, after 6 months of exercise training, and 2 weeks after exercise training cessation (n = 53). A principal components analysis (PCA) strategy was used to relate changes in these intermediates to changes in S(I). RESULTS: PCA reduced the number of intermediates from 90 to 24 factors composed of biologically related components. With exercise training, improvements in S(I) were associated with reductions in by-products of fatty acid oxidation and increases in glycine and proline (P < 0.05, R² = 0.59); these relationships were retained 15 days after cessation of exercise training (P < 0.05, R² = 0.34). CONCLUSIONS: These observations support prior observations in animal models that exercise training promotes more efficient mitochondrial β-oxidation and challenges current hypotheses regarding exercise training and glycine metabolism.Item Open Access Exploring the Role of Mitochondrial Bioenergetics and Metabolism in Heart Failure(2020) Davidson, Michael ThomasHeart failure is a worldwide public health problem with substantial clinical burden and economic costs. In the progression into failure, the heart undergoes dramatic alterations in mitochondrial fuel metabolism and bioenergetics. As such, there is considerable interest in the delineation of regulatory events involved in the metabolic dysfunction of heart failure. Previous collaborative work identified three metabolic signatures associated with early stage heart failure: 1) accumulation of acylcarnitine metabolites; 2) mitochondrial hyperacetylation; and 3) elevated ketone catabolism. The goal of this dissertation was to explore the role of these metabolic signatures in the pathogenesis of heart failure.
Tissue accumulation of acylcarnitine metabolites is characteristic of mitochondrial dysfunction and indicative of incomplete β-oxidation. This occurs when a large portion of the fatty acids (i.e., acyl groups) within the mitochondria are not fully catabolized and the resulting intermediates are transferred to carnitine esters, enabling the traversal of biological membranes and departure from the mitochondrial matrix.
Nϵ-acetylation in the mitochondrial matrix is a non-enzymatic, post-translational modification (PTM) that spontaneously arises from the relatively basic pH and abundance of acetyl-CoA. Accumulation of this PTM has been observed in other tissues and disease states with evidence suggesting it impairs mitochondrial metabolism and causes dysfunction. However, convincing studies are lacking to establish a direct causal connection between dysfunction and acetylation. To address this shortcoming, a novel assay platform for the comprehensive assessment of mitochondrial bioenergetic transduction was developed and validated. Next, we generated and validated a novel mouse model of cardiac mitochondrial hyperacetylation and utilized the bioenergetic assay platform to test the hypothesis that it causes metabolic perturbations. Surprisingly, these hyperacetylated mitochondria exhibited almost no deficits in mitochondrial oxidative metabolism. To determine if hyperacetylation causes mitochondrial dysfunction in vivo under pathologic stimuli, the mouse model and littermate controls were subjected to transaortic constriction, a surgical method to induce pressure-overload heart failure. The hyperacetylated animals did not exhibit enhanced sensitivity toward cardiac dysfunction relative controls. With these results, we concluded that mitochondrial hyperacetylation does not contribute to the pathogenesis of heart failure.
Elevated ketone catabolism was observed in early stage failing hearts. Through a series of murine and canine heart failure models, ketone catabolism was shown to be adaptive in response to pathological stress. Additionally, the mitochondrial bioenergetic assay platform was applied to cardiac mitochondria under substrate limited-conditions. These results indicate that ketone catabolism improves bioenergetic efficiency under constraints which mimic the failing heart. With these results, we conclude ketone catabolism is an important metabolic defense in response to the dysfunction of the failing heart.
Item Open Access Inhibition of TGFβ Signaling Does Not Improve the Limited Proliferative Response to Nkx6.1 Or Pdx-1 Overexpression in Aged Rat Islets(2015) Rosa, TaylorA deficiency in functional pancreatic beta-cells is a defining feature in type 1 and type 2 diabetes. The development of therapeutic strategies for replacement and regeneration of beta-cell mass is a key objective of current diabetes research. The Newgard lab has had a particular focus in exploring novel beta-cell replication pathways in order to identify targets that enhance beta-cell proliferation, survival, and function. The beta-cell developmental transcription factors Nkx6.1 and Pdx-1 each have a profound proliferative effect when overexpressed in young rat islets in vitro. The unique ability of these factors and the pathways that they control to expand functional beta-cell mass while either being neutral or positive for other key functions (survival, insulin secretion) encourages further studies to better elucidate candidate target genes within these pathways.
A major limitation of the research to date is that Nkx6.1 and Pdx-1 only exert their proliferative effects in young (2 months) rodent islets and not in old (8-10 months) rodent islets. Moreover, these factors are only weakly active in human islets, most of which come from middle-aged donors. Nkx6.1 and Pdx-1 engage pathways that are upstream of the core cell cycle machinery and that have the potential to be stimulated in a beta-cell specific manner, but use of this approach will depend on a better understanding of the differences between human and rodent islets, which may be modeled by the differences between old and young rat islets.
Item Open Access Metabolic Pathways of Type 2 Diabetes: Intersection of Genetics, Transcriptomics, and Metabolite Profiling(2008-07-25) Ferrara, Christine ThereseType 2 diabetes is characterized by insufficient insulin secretion to maintain euglycemia in the setting of peripheral insulin resistance. The majority of insulin-resistant diabetics are obese, yet not all insulin-resistant obese individuals develop diabetes. This obesity/diabetes dichotomy suggests that genetic factors play a pivotal role in disease pathogenesis.
Gene mapping has identified genetic quantitative trait loci (QTL) influencing disease-related phenotypes. To uncover molecular pathways leading from genotype to clinical trait, we classify phenotypes in greater depth and identify QTL that influence combinations of physiological traits, mRNA levels, and metabolite abundance. A major challenge then becomes deciphering the causal interrelationships among correlated phenotypes.
In this dissertation, we develop methods for building causal direction into an undirected network by including QTLs for each phenotype. We then apply and validate these methods in an F2 intercross between the diabetes-resistant C57BL/6 leptinob/ob (B6ob/ob) and the diabetes-susceptible BTBR leptinob/ob (BTBRob/ob) mouse strains. We show that genomic analysis can be integrated with liver transcriptional and metabolite profiling data to construct causal networks for specific metabolic processes in liver. This causal network construction led to the discovery of a pathway by which glutamine induces Phosphoenolpyruvate carboxykinase (Pck1) expression.
To investigate glutamine induction of Pck1 in the context of diabetes, we perform mRNA expression analysis and metabolic profiling in liver of the parental strains. We find glutamine is decreased with obesity in both strains; in the diabetes-resistant B6 strain, liver Pck1 expression parallels glutamine abundance, but in the diabetes-susceptible BTBR strain, Pck1 is elevated with obesity. Follow-up in vitro studies indicate that α-ketoglutarate, which is elevated nearly two fold in the livers of BTBR relative to B6 mice in vivo, may mediate the glutamine effect. We hypothesize that hepatic Pck1 is regulated by glutamine abundance in the liver of B6 animals, but in the presence of high α-ketoglutarate, Pck1 becomes uncoupled from glutamine regulation in the livers of diabetes-susceptible BTBR mice.
Our method of causal network construction led to the discovery of glutamine induction of a key hepatic gluconeogenic enzyme, a pathway potentially disrupted in the diabetes-susceptible BTBR mouse. Future studies will include identifying hepatic mediators of the glutamine effect, and applying QTL-directed networks to multiple organs to ultimately define causal relationships between tissues involved in diabetes progression.
Item Open Access Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation.(J Clin Invest, 2015-01) Gerriets, Valerie A; Kishton, Rigel J; Nichols, Amanda G; Macintyre, Andrew N; Inoue, Makoto; Ilkayeva, Olga; Winter, Peter S; Liu, Xiaojing; Priyadharshini, Bhavana; Slawinska, Marta E; Haeberli, Lea; Huck, Catherine; Turka, Laurence A; Wood, Kris C; Hale, Laura P; Smith, Paul A; Schneider, Martin A; MacIver, Nancie J; Locasale, Jason W; Newgard, Christopher B; Shinohara, Mari L; Rathmell, Jeffrey CActivation of CD4+ T cells results in rapid proliferation and differentiation into effector and regulatory subsets. CD4+ effector T cell (Teff) (Th1 and Th17) and Treg subsets are metabolically distinct, yet the specific metabolic differences that modify T cell populations are uncertain. Here, we evaluated CD4+ T cell populations in murine models and determined that inflammatory Teffs maintain high expression of glycolytic genes and rely on high glycolytic rates, while Tregs are oxidative and require mitochondrial electron transport to proliferate, differentiate, and survive. Metabolic profiling revealed that pyruvate dehydrogenase (PDH) is a key bifurcation point between T cell glycolytic and oxidative metabolism. PDH function is inhibited by PDH kinases (PDHKs). PDHK1 was expressed in Th17 cells, but not Th1 cells, and at low levels in Tregs, and inhibition or knockdown of PDHK1 selectively suppressed Th17 cells and increased Tregs. This alteration in the CD4+ T cell populations was mediated in part through ROS, as N-acetyl cysteine (NAC) treatment restored Th17 cell generation. Moreover, inhibition of PDHK1 modulated immunity and protected animals against experimental autoimmune encephalomyelitis, decreasing Th17 cells and increasing Tregs. Together, these data show that CD4+ subsets utilize and require distinct metabolic programs that can be targeted to control specific T cell populations in autoimmune and inflammatory diseases.Item Open Access Metabolomic Profiling Identifies Novel Circulating Biomarkers of Mitochondrial Dysfunction Differentially Elevated in Heart Failure With Preserved Versus Reduced Ejection Fraction: Evidence for Shared Metabolic Impairments in Clinical Heart Failure.(J Am Heart Assoc, 2016-07-29) Hunter, Wynn G; Kelly, Jacob P; McGarrah, Robert W; Khouri, Michel G; Craig, Damian; Haynes, Carol; Ilkayeva, Olga; Stevens, Robert D; Bain, James R; Muehlbauer, Michael J; Newgard, Christopher B; Felker, G Michael; Hernandez, Adrian F; Velazquez, Eric J; Kraus, William E; Shah, Svati HBACKGROUND: Metabolic impairment is an important contributor to heart failure (HF) pathogenesis and progression. Dysregulated metabolic pathways remain poorly characterized in patients with HF and preserved ejection fraction (HFpEF). We sought to determine metabolic abnormalities in HFpEF and identify pathways differentially altered in HFpEF versus HF with reduced ejection fraction (HFrEF). METHODS AND RESULTS: We identified HFpEF cases, HFrEF controls, and no-HF controls from the CATHGEN study of sequential patients undergoing cardiac catheterization. HFpEF cases (N=282) were defined by left ventricular ejection fraction (LVEF) ≥45%, diastolic dysfunction grade ≥1, and history of HF; HFrEF controls (N=279) were defined similarly, except for having LVEF <45%. No-HF controls (N=191) had LVEF ≥45%, normal diastolic function, and no HF diagnosis. Targeted mass spectrometry and enzymatic assays were used to quantify 63 metabolites in fasting plasma. Principal components analysis reduced the 63 metabolites to uncorrelated factors, which were compared across groups using ANCOVA. In basic and fully adjusted models, long-chain acylcarnitine factor levels differed significantly across groups (P<0.0001) and were greater in HFrEF than HFpEF (P=0.0004), both of which were greater than no-HF controls. We confirmed these findings in sensitivity analyses using stricter inclusion criteria, alternative LVEF thresholds, and adjustment for insulin resistance. CONCLUSIONS: We identified novel circulating metabolites reflecting impaired or dysregulated fatty acid oxidation that are independently associated with HF and differentially elevated in HFpEF and HFrEF. These results elucidate a specific metabolic pathway in HF and suggest a shared metabolic mechanism in HF along the LVEF spectrum.Item Open Access Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis.(PLoS Genet, 2015-11) Kraus, William E; Muoio, Deborah M; Stevens, Robert; Craig, Damian; Bain, James R; Grass, Elizabeth; Haynes, Carol; Kwee, Lydia; Qin, Xuejun; Slentz, Dorothy H; Krupp, Deidre; Muehlbauer, Michael; Hauser, Elizabeth R; Gregory, Simon G; Newgard, Christopher B; Shah, Svati HLevels of certain circulating short-chain dicarboxylacylcarnitine (SCDA), long-chain dicarboxylacylcarnitine (LCDA) and medium chain acylcarnitine (MCA) metabolites are heritable and predict cardiovascular disease (CVD) events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490), we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER) stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1) These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6-2.3x10-10). Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2). Expression quantitative trait loci (eQTL) pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS) arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk.Item Open Access Pharmacological targeting of the mitochondrial phosphatase PTPMT1.(2009) Doughty-Shenton, DahliaThe dual specificity protein tyrosine phosphatases comprise the largest and most diverse group of protein tyrosine phosphatases and play integral roles in the regulation of cell signaling events. The dual specificity protein tyrosine phosphatases impact multiple cellular processes including mitogenesis, differentiation, adhesion, migration, insulin secretion and programmed cell death. Thus, the dysregulation of these enzymes has been implicated in a myriad of human disease states. While the large volume of genetic data that has become available following genome sequencing efforts over the last decade has led to the rapid identification of many new dual specificity protein tyrosine phosphatases, the elucidation of the cellular function and substrates of these enzymes has been much slower. Hence, there is a need for new tools to study the dual specificity protein tyrosine phosphatases and the identification of inhibitors of these enzymes is regarded as an attractive prospect, potentially affording not only new means of studying these enzymes, but also possible therapeutics for the treatment of diseases caused by their dysregulation. However, the identification of potent, selective inhibitors of the dual specificity protein tyrosine phosphatases has proven somewhat difficult. PTPMT1, Protein Tyrosine Phosphatase Localized to the Mitochondrion 1 is a recently discovered, mitochondrion-localized, dual specificity phosphatase which has been implicated in the regulation of insulin secretion. However, the details of the mechanism by which PTPMT1 impacts insulin secretion, as well as its substrate in the pancreatic β-cell, have yet to be uncovered. Thus, the identification of a potent, selective inhibitor of the enzyme would aid in further study of PTPMT1. This work describes the identification of such an inhibitor of PTPMT1 following an in vitro screen of small molecule, chemical compounds using an artificial substrate. Following the screen, the lead compound emerged as a potent and potentially selective inhibitor of PTPMT1 both in vitro and in cells. Studies using this compound have shown that the compound induces increased secretion of insulin in a dose-dependent manner and thus support the notion that PTPMT1 may serve as a potential target for the treatment of Type II diabetes.Item Open Access Pyruvate Cycling Pathways and Glucose-Stimulated Insulin Secretion in Pancreatic Beta Cells(2008-02-11) Ronnebaum, Sarah MariePancreatic β-cells secrete insulin in response to glucose. Intracellular glucose metabolism drives a cascade of events, including ATP production, calcium influx, and insulin processing, culminating in insulin granule exocytosis. However, insulin secretory mechanisms are incompletely understood. β-cells have the capacity to flow pyruvate into the TCA cycle via the anaplerotic enzyme pyruvate carboxylase to engage one of several pathways of pyruvate recycling. Previous work demonstrated that pyruvate cycling was correlated with insulin secretion, and that NADPH may be involved in granule exocytosis. We hypothesized that NADPH-producing cytosolic enzymes isocitrate dehydrogenase (ICDc) and malic enzyme (MEc) may be involved in both pyruvate cycling and insulin secretion. ICDc expression was reduced using siRNA in the INS-1 derived cell line 832/13 and in isolated rat islets, which led decreased glucose-stimulated insulin secretion (GSIS), pyruvate cycling, and NADPH. Organic acid profiling revealed that decreased pyruvate cycling was compensated by an increase in lactate and stable pyruvate levels. This work established an important role for ICDc in maintaining GSIS through pyruvate-isocitrate cycling. MEc expression was reduced using siRNA in two β-cell lines, 832/13 and 832/3, as well as isolated rat islets. MEc suppression inhibited GSIS in the 832/13 cells only, and these effects were not due to changes in pyruvate cycling, NADPH, or the organic acid profile. This suggests that in normal β-cells, MEc does not participate in pyruvate cycling. Acetyl CoA carboxylase 1 (ACC1) is essential in de novo lipogenesis, which has been implicated in GSIS by other laboratories. Chronic, but not acute, inhibition of ACC1 via siRNA reduced insulin secretion independent of lipogenesis. ACC1 siRNA decreased glucose oxidation, pyruvate cycling, and ATP:ADP, due to an unexpected decrease in glucokinase protein. This work questions the use of ACC inhibitors in obesity and diabetes therapy. In summary, these studies on ICDc, MEc, and ACC1, coupled with concurrent work in our laboratory, eliminate two potential pyruvate cycling pathways (pyruvate-malate and pyruvate-citrate) and establish that pyruvate-isocitrate cycling is the critical pathway for control of GSIS. Future work will focus on identifying the signaling intermediate generated in the pyruvate-isocitrate pathway that links to insulin granule exocytosis.Item Open Access Shared Metabolic Pathways in Fuel-Stimulated Insulin Secretion(2009) Odegaard, Matthew LesterInsulin secretion is a fundamental process of pancreatic beta-cells required for the maintenance of glucose homeostasis. Fuel-stimulated insulin secretion occurs in proportion to the rate of metabolism of fuel substrates, yet the signals generated by metabolism of these secretagogues are incompletely understood. The increased burden placed on the beta-cell in conditions of obesity and insulin resistance often leads to dysregulation of stimulous-secretion coupling. Therefore, better understanding of the metabolic events required for insulin release is likely to be helpful in development of more effective treatments for diabetes.
Previous work in our lab revealed a critical role for the pyruvate-isocitrate cycling pathway in glucose-stimulated insulin secretion. It has been our hypothesis that this series of reactions plays a unique role in the beta-cell, and may be responsible for the generation of second-messenger signals critical for insulin secretion in response to increased fuel metabolism. One of the intermediates in the pyruvate/isocitrate cycle is cytosolic 2-oxoglutarate (2OG). In an effort to better understand the components of the pyruvate/isocitrate cycle and the signals that it generates, we initially focused our studies on the transporter protein responsible for the return of 2OG to the mitochondria, the 2-oxoglutarate carrier (OGC).
OGC was overexpressed in rat insulinoma 832/13 beta-cells and suppressed in both 832/13 cells and islets, and effects on metabolism and insulin secretion were measured. While overexpression of the OGC failed to alter insulin secretion, its siRNA-mediated suppression resulted in decreased insulin secretion in response to glucose, glutamine + BCH, and dimethyl-2-oxoglutarate. Suppression of OGC did not affect core pathways of fuel metabolism such as glucose usage, glucose oxidation or ATP production during glucose-stimulated insulin secretion (GSIS) or glutamine oxidation or ATP production during amino acid-stimulated insulin secretion (AASIS). Similar to previous findings, glucose-induced NADPH production was determined to be decreased in response to OGC suppression, whereas NADPH production during AASIS in untreated cells was already much lower than for GSIS, and suppression of OGC failed to decrease NADPH further.
As an additional approach to studying the role of 2OG metabolism in insulin secretion, we also investigated the mitochondrial enzyme glutamate dehydrogenase (Glud1). Overexpression of wild-type Glud1 failed to alter insulin secretion in 832/13 cells or in islets; however, suppression of Glud1 decreased both GSIS and AASIS, but did not affect dimethyl-2OG-stimulated insulin secretion. The reduction in AASIS was most likely the result of reduced glutamine oxidation. In contrast, during GSIS, NADPH production was decrease by Glud1 suppression, similar to our observation with the OGC.
In summary, these data expand our understanding of the metabolic pathways necessary for insulin secretion, and support the idea of a common metabolic pathway required for fuel-stimulated insulin release, including flux through the OGC, Glud1, and ICDc. However, while these data support the hypothesis that NADPH production is necessary for robust GSIS, it plays a less-prominent role during AASIS, and most likely works in concert with additional coupling-factors and signals.
Item Open Access The Pediatric Obesity Microbiome and Metabolism Study (POMMS): Methods, Baseline Data, and Early Insights.(Obesity (Silver Spring, Md.), 2021-03) McCann, Jessica R; Bihlmeyer, Nathan A; Roche, Kimberly; Catherine, Cameron; Jawahar, Jayanth; Kwee, Lydia Coulter; Younge, Noelle E; Silverman, Justin; Ilkayeva, Olga; Sarria, Charles; Zizzi, Alexandra; Wootton, Janet; Poppe, Lisa; Anderson, Paul; Arlotto, Michelle; Wei, Zhengzheng; Granek, Joshua A; Valdivia, Raphael H; David, Lawrence A; Dressman, Holly K; Newgard, Christopher B; Shah, Svati H; Seed, Patrick C; Rawls, John F; Armstrong, Sarah CObjective
The purpose of this study was to establish a biorepository of clinical, metabolomic, and microbiome samples from adolescents with obesity as they undergo lifestyle modification.Methods
A total of 223 adolescents aged 10 to 18 years with BMI ≥95th percentile were enrolled, along with 71 healthy weight participants. Clinical data, fasting serum, and fecal samples were collected at repeated intervals over 6 months. Herein, the study design, data collection methods, and interim analysis-including targeted serum metabolite measurements and fecal 16S ribosomal RNA gene amplicon sequencing among adolescents with obesity (n = 27) and healthy weight controls (n = 27)-are presented.Results
Adolescents with obesity have higher serum alanine aminotransferase, C-reactive protein, and glycated hemoglobin, and they have lower high-density lipoprotein cholesterol when compared with healthy weight controls. Metabolomics revealed differences in branched-chain amino acid-related metabolites. Also observed was a differential abundance of specific microbial taxa and lower species diversity among adolescents with obesity when compared with the healthy weight group.Conclusions
The Pediatric Metabolism and Microbiome Study (POMMS) biorepository is available as a shared resource. Early findings suggest evidence of a metabolic signature of obesity unique to adolescents, along with confirmation of previously reported findings that describe metabolic and microbiome markers of obesity.