Browsing by Author "Nielsen, Kirsten"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access AIDS-Related Mycoses: Current Progress in the Field and Future Priorities(Trends in Microbiology, 2017-06) Armstrong-James, Darius; Bicanic, Tihana; Brown, Gordon D; Hoving, Jennifer C; Meintjes, Graeme; Nielsen, KirstenItem Open Access Cryptococcal cell morphology affects host cell interactions and pathogenicity.(PLoS Pathog, 2010-06-17) Okagaki, Laura H; Strain, Anna K; Nielsen, Judith N; Charlier, Caroline; Baltes, Nicholas J; Chrétien, Fabrice; Heitman, Joseph; Dromer, Françoise; Nielsen, KirstenCryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 microm. Cell enlargement was observed in vivo, producing cells up to 100 microm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aDelta pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection.Item Open Access Evidence that the human pathogenic fungus Cryptococcus neoformans var. grubii may have evolved in Africa.(PLoS One, 2011-05-11) Litvintseva, Anastasia P; Carbone, Ignazio; Rossouw, Jenny; Thakur, Rameshwari; Govender, Nelesh P; Mitchell, Thomas GMost of the species of fungi that cause disease in mammals, including Cryptococcus neoformans var. grubii (serotype A), are exogenous and non-contagious. Cryptococcus neoformans var. grubii is associated worldwide with avian and arboreal habitats. This airborne, opportunistic pathogen is profoundly neurotropic and the leading cause of fungal meningitis. Patients with HIV/AIDS have been ravaged by cryptococcosis--an estimated one million new cases occur each year, and mortality approaches 50%. Using phylogenetic and population genetic analyses, we present evidence that C. neoformans var. grubii may have evolved from a diverse population in southern Africa. Our ecological studies support the hypothesis that a few of these strains acquired a new environmental reservoir, the excreta of feral pigeons (Columba livia), and were globally dispersed by the migration of birds and humans. This investigation also discovered a novel arboreal reservoir for highly diverse strains of C. neoformans var. grubii that are restricted to southern Africa, the mopane tree (Colophospermum mopane). This finding may have significant public health implications because these primal strains have optimal potential for evolution and because mopane trees contribute to the local economy as a source of timber, folkloric remedies and the edible mopane worm.Item Open Access The Cryptococcus neoformans transcriptome at the site of human meningitis(mBio, 2014-02-04) Chen, Yuan; Toffaletti, Dena L; Tenor, Jennifer L; Litvintseva, Anastasia P; Fang, Charles; Mitchell, Thomas G; McDonald, Tami R; Nielsen, Kirsten; Boulware, David R; Bicanic, Tihana; Perfect, John RCryptococcus neoformans is the leading cause of fungal meningitis worldwide. Previous studies have characterized the cryptococcal transcriptome under various stress conditions, but a comprehensive profile of the C. neoformans transcriptome in the human host has not been attempted. Here, we extracted RNA from yeast cells taken directly from the cerebrospinal fluid (CSF) of two AIDS patients with cryptococcal meningitis prior to antifungal therapy. The patients were infected with strains of C. neoformans var. grubii of molecular type VNI and VNII. Using RNA-seq, we compared the transcriptional profiles of these strains under three environmental conditions (in vivo CSF, ex vivo CSF, and yeast extract-peptone-dextrose [YPD]). Although we identified a number of differentially expressed genes, single nucleotide variants, and novel genes that were unique to each strain, the overall expression patterns of the two strains were similar under the same environmental conditions. Specifically, yeast cells obtained directly from each patient's CSF were more metabolically active than cells that were incubated ex vivo in CSF. Compared with growth in YPD, some genes were identified as significantly upregulated in both in vivo and ex vivo CSF, and they were associated with genes previously recognized for contributing to pathogenicity. For example, genes with known stress response functions, such as RIM101, ENA1, and CFO1, were regulated similarly in the two clinical strains. Conversely, many genes that were differentially regulated between the two strains appeared to be transporters. These findings establish a platform for further studies of how this yeast survives and produces disease. © 2014 Chen et al.