Browsing by Author "Nijhout, H Frederik"
- Results Per Page
- Sort Options
Item Open Access A population model of folate-mediated one-carbon metabolism.(Nutrients, 2013-07-05) Duncan, Tanya M; Reed, Michael C; Nijhout, H FrederikBACKGROUND: Previous mathematical models for hepatic and tissue one-carbon metabolism have been combined and extended to include a blood plasma compartment. We use this model to study how the concentrations of metabolites that can be measured in the plasma are related to their respective intracellular concentrations. METHODS: The model consists of a set of ordinary differential equations, one for each metabolite in each compartment, and kinetic equations for metabolism and for transport between compartments. The model was validated by comparison to a variety of experimental data such as the methionine load test and variation in folate intake. We further extended this model by introducing random and systematic variation in enzyme activity. OUTCOMES AND CONCLUSIONS: A database of 10,000 virtual individuals was generated, each with a quantitatively different one-carbon metabolism. Our population has distributions of folate and homocysteine in the plasma and tissues that are similar to those found in the NHANES data. The model reproduces many other sets of clinical data. We show that tissue and plasma folate is highly correlated, but liver and plasma folate much less so. Oxidative stress increases the plasma S-adenosylmethionine/S-adenosylhomocysteine (SAM/SAH) ratio. We show that many relationships among variables are nonlinear and in many cases we provide explanations. Sampling of subpopulations produces dramatically different apparent associations among variables. The model can be used to simulate populations with polymorphisms in genes for folate metabolism and variations in dietary input.Item Open Access A Quantitative Analysis of Growth and Size Regulation in Manduca sexta: The Physiological Basis of Variation in Size and Age at Metamorphosis.(PLoS One, 2015) Grunert, Laura W; Clarke, Jameson W; Ahuja, Chaarushi; Eswaran, Harish; Nijhout, H FrederikBody size and development time are important life history traits because they are often highly correlated with fitness. Although the developmental mechanisms that control growth have been well studied, the mechanisms that control how a species-characteristic body size is achieved remain poorly understood. In insects adult body size is determined by the number of larval molts, the size increment at each molt, and the mechanism that determines during which instar larval growth will stop. Adult insects do not grow, so the size at which a larva stops growing determines adult body size. Here we develop a quantitative understanding of the kinetics of growth throughout larval life of Manduca sexta, under different conditions of nutrition and temperature, and for genetic strains with different adult body sizes. We show that the generally accepted view that the size increment at each molt is constant (Dyar's Rule) is systematically violated: there is actually a progressive increase in the size increment from instar to instar that is independent of temperature. In addition, the mass-specific growth rate declines throughout the growth phase in a temperature-dependent manner. We show that growth within an instar follows a truncated Gompertz trajectory. The critical weight, which determines when in an instar a molt will occur, and the threshold size, which determines which instar is the last, are different in genetic strains with different adult body sizes. Under nutrient and temperature stress Manduca has a variable number of larval instars and we show that this is due to the fact that more molts at smaller increments are taken before threshold size is reached. We test whether the new insight into the kinetics of growth and size determination are sufficient to explain body size and development time through a mathematical model that incorporates our quantitative findings.Item Restricted A switch in the control of growth of the wing imaginal disks of Manduca sexta.(PLoS One, 2010-05-19) Tobler, Alexandra; Nijhout, H FrederikBACKGROUND: Insulin and ecdysone are the key extrinsic regulators of growth for the wing imaginal disks of insects. In vitro tissue culture studies have shown that these two growth regulators act synergistically: either factor alone stimulates only limited growth, but together they stimulate disks to grow at a rate identical to that observed in situ. It is generally thought that insulin signaling links growth to nutrition, and that starvation stops growth because it inhibits insulin secretion. At the end of larval life feeding stops but the disks continue to grow, so at that time disk growth has become uncoupled from nutrition. We sought to determine at exactly what point in development this uncoupling occurs. METHODOLOGY: Growth and cell proliferation in the wing imaginal disks and hemolymph carbohydrate concentrations were measured at various stages in the last larval instar under experimental conditions of starvation, ligation, rescue, and hormone treatment. PRINCIPAL FINDINGS: Here we show that in the last larval instar of M. sexta, the uncoupling of nutrition and growth occurs as the larva passes the critical weight. Before this time, starvation causes a decline in hemolymph glucose and trehalose and a cessation of wing imaginal disks growth, which can be rescued by injections of trehalose. After the critical weight the trehalose response to starvation disappears, and the expression of insulin becomes decoupled from nutrition. After the critical weight the wing disks loose their sensitivity to repression by juvenile hormone, and factors from the abdomen, but not the brain, are required to drive continued growth. CONCLUSIONS: During the last larval instar imaginal disk growth becomes decoupled from somatic growth at the time that the endocrine events of metamorphosis are initiated. These regulatory changes ensure that disk growth continues uninterrupted when the nutritive and endocrine signals undergo the drastic changes associated with metamorphosis.Item Open Access An Experimental and Quantitative Analysis of E. coli Stress Response: Metabolic and Antibiotic Stressors(2014) Jalli, Inderpreet SinghA series of experiments and mathematical models explore the response of the bacteria E. coli to stressors. Experimentally, the effect of L-homocysteine, a non-protein amino acid, is explored, and via math models, the effect of trimethoprim, a common antibiotic, is also explored. Previous work on L-homocysteine labels it a stressor, and this assertion is refined via the presented work. A mathematical model that improves on a previous work published by Kwon et al. (2008) explores the response of E. coli to various supplementations of amino acids when exposed to trimethoprim. New methods of developing antibiotics and therapeutic drug treatments are also explored.
Item Open Access An In Vivo Definition of Brain Histamine Dynamics Reveals Critical Neuromodulatory Roles for This Elusive Messenger.(International journal of molecular sciences, 2022-11) Berger, Shane N; Baumberger, Beatrice; Samaranayake, Srimal; Hersey, Melinda; Mena, Sergio; Bain, Ian; Duncan, William; Reed, Michael C; Nijhout, H Frederik; Best, Janet; Hashemi, ParastooHistamine is well known for mediating peripheral inflammation; however, this amine is also found in high concentrations in the brain where its roles are much less known. In vivo chemical dynamics are difficult to measure, thus fundamental aspects of histamine's neurochemistry remain undefined. In this work, we undertake the first in-depth characterization of real time in vivo histamine dynamics using fast electrochemical tools. We find that histamine release is sensitive to pharmacological manipulation at the level of synthesis, packaging, autoreceptors and metabolism. We find two breakthrough aspects of histamine modulation. First, differences in H3 receptor regulation between sexes show that histamine release in female mice is much more tightly regulated than in male mice under H3 or inflammatory drug challenge. We hypothesize that this finding may contribute to hormone-mediated neuroprotection mechanisms in female mice. Second, a high dose of a commonly available antihistamine, the H1 receptor inverse agonist diphenhydramine, rapidly decreases serotonin levels. This finding highlights the sheer significance of pharmaceuticals on neuromodulation. Our study opens the path to better understanding and treating histamine related disorders of the brain (such as neuroinflammation), emphasizing that sex and modulation (of serotonin) are critical factors to consider when studying/designing new histamine targeting therapeutics.Item Open Access Big or fast: two strategies in the developmental control of body size.(BMC Biol, 2015-08-04) Nijhout, H FrederikAdult body size is controlled by the mechanisms that stop growth when a species-characteristic size has been reached. The mechanisms by which size is sensed and by which this information is transduced to the growth regulating system are beginning to be understood in a few species of insects. Two rather different strategies for control have been discovered; one favors large body size and the other favors rapid development.Item Open Access Development and Evolution of the Membracid Pronotum(2023) Kudla, Anna MarieA major goal of biological studies is to understand how complex forms develop and evolve. Each form is the result of molecular developmental patterning, growth, and the accumulation of changes in these processes from internal and external perturbations in ancestral forms. This dissertation uses each of these lenses to investigate the complex forms in the insect family Membracidae, which arises from the pronotum. In most insects, the pronotum is a simple, domed structure just behind the head, but in membracids it has enlarged and elaborated to look like thorns, plant stipules, fungi, and ants, among other shapes. To investigate this diversity, I rely on landmark based geometric morphometrics to quantify pronotal shapes. The specimens I used included those from a laboratory colony, those collected in and around San Jose, Costa Rica, and those from the Smithsonian National Museum of Natural History collection. In Chapter 1, I examined 5th instar morphogenesis to elucidate the timing of developmental events during the transition from juvenile to adult. These findings informed Chapter 2, which revealed developmental mechanisms related to growth led to transcriptional similarity between the pronotum and wings. In Chapter 3, I identified ontogenetic changes in the patterning of membracid pronotal shape compared to that of a closely related outgroup. Finally, in Chapter 4, I used a phylogenetic framework to investigate developmental modules and the co-occurrence of pronotal shape with two life history characteristics.
Item Open Access Evolutionary trends in phenotypic elements of seasonal forms of the tribe Junoniini (Lepidoptera: Nymphalidae)(2017) Clarke, Jameson WellsSeasonal polyphenism in insects is the phenomenon whereby multiple phenotypes can arise from a single genotype depending on environmental conditions during development. Many butterflies have multiple generations per year, and environmentally induced variation in wing color pattern phenotype allows them to develop adaptations to the specific season in which the adults live. Elements of butterfly color patterns are developmentally semi-autonomous allowing for detailed developmental and evolutionary changes in the overall color pattern. This developmental flexibility of the color pattern can result in extremely diverse seasonal phenotypes in a single species. In this study, we asked the following questions: a) How do wing phenotype elements such as shape and pattern vary between seasonal forms? b) Can this variation be explained phylogenetically? c) If so, what are the various pattern development strategies used to achieve crypsis in the dry season form? To answer these questions, we used high resolution images to analyze pattern element variation of 34 seasonally polyphenic butterfly species belonging to the tribe Junoniini (Lepidoptera: Nymphalidae). We show that forewing shape and eyespot size both vary seasonally, and that the methods by which phenotype elements change in the dry seasonal forms is different in different clades and may therefore have independent and diverse evolutionary origins.
Item Open Access Inflammation-Induced Histamine Impairs the Capacity of Escitalopram to Increase Hippocampal Extracellular Serotonin.(The Journal of neuroscience : the official journal of the Society for Neuroscience, 2021-07) Hersey, Melinda; Samaranayake, Srimal; Berger, Shane N; Tavakoli, Navid; Mena, Sergio; Nijhout, H Frederik; Reed, Michael C; Best, Janet; Blakely, Randy D; Reagan, Lawrence P; Hashemi, ParastooCommonly prescribed selective serotonin reuptake inhibitors (SSRIs) inhibit the serotonin transporter to correct a presumed deficit in extracellular serotonin signaling during depression. These agents bring clinical relief to many who take them; however, a significant and growing number of individuals are resistant to SSRIs. There is emerging evidence that inflammation plays a significant role in the clinical variability of SSRIs, though how SSRIs and inflammation intersect with synaptic serotonin modulation remains unknown. In this work, we use fast in vivo serotonin measurement tools to investigate the nexus between serotonin, inflammation, and SSRIs. Upon acute systemic lipopolysaccharide (LPS) administration in male and female mice, we find robust decreases in extracellular serotonin in the mouse hippocampus. We show that these decreased serotonin levels are supported by increased histamine activity (because of inflammation), acting on inhibitory histamine H3 heteroreceptors on serotonin terminals. Importantly, under LPS-induced histamine increase, the ability of escitalopram to augment extracellular serotonin is impaired because of an off-target action of escitalopram to inhibit histamine reuptake. Finally, we show that a functional decrease in histamine synthesis boosts the ability of escitalopram to increase extracellular serotonin levels following LPS. This work reveals a profound effect of inflammation on brain chemistry, specifically the rapidity of inflammation-induced decreased extracellular serotonin, and points the spotlight at a potentially critical player in the pathology of depression, histamine. The serotonin/histamine homeostasis thus, may be a crucial new avenue in improving serotonin-based treatments for depression.SIGNIFICANCE STATEMENT Acute LPS-induced inflammation (1) increases CNS histamine, (2) decreases CNS serotonin (via inhibitory histamine receptors), and (3) prevents a selective serotonin reuptake inhibitor (SSRI) from effectively increasing extracellular serotonin. A targeted depletion of histamine recovers SSRI-induced increases in extracellular hippocampal serotonin.Item Open Access Insect Development and Evolution: Perspectives on Individual and Colony-Level Phenotypes(2017) Gawne, Richard ThomasThis dissertation analyzes the develop and evolution of insect phenotypes, ranging from the level of individuals to colonies. The first four chapters focus on wing patterning in the bella moth Utetheisa ornatrix. I begin by quantifying the pattern variation in the species, then attempt to identify some of the mechanisms that give rise to the observed phenotypic differences. After describing how the primitive patterns of U. ornatrix can be construed as evidence that nymphalid groundplan symmetry systems arose from the fusion of irregular spots, I present the results of a series of artificial selection experiments that highlight the species’ capacity for phenotypic evolvability. I then detail how changes in Wnt expression can lead to the evolution of bold phenotypes, and show that pterin pigments provide the primary source of coloration in U. ornatrix patterns. The final chapter focuses on the evolution of social phenotypes in insect societies. I suggest that the evolution of a physically differentiated reproductive and worker castes marks an irreversible major evolutionary transition to superorganismality. Social groups of this type are fundamentally different than monomorphic cooperative breeders, and can meaningfully be compared to metazoan organisms with differentiated germ and soma.
Item Open Access One-carbon metabolism during the menstrual cycle and pregnancy(PLOS Computational Biology) Reed, Michael; Nijhout, H Frederik; Kim, RubyItem Open Access Propagation of fluctuations in biochemical systems, I: Linear SSC networks(Bulletin of Mathematical Biology, 2007-08-01) Anderson, David F; Mattingly, Jonathan C; Nijhout, H Frederik; Reed, Michael CWe investigate the propagation of random fluctuations through biochemical networks in which the number of molecules of each species is large enough so that the concentrations are well modeled by differential equations. We study the effect of network topology on the emergent properties of the reaction system by characterizing the behavior of variance as fluctuations propagate down chains and studying the effect of side chains and feedback loops. We also investigate the asymptotic behavior of the system as one reaction becomes fast relative to the others. © 2007 Springer Science+Business Media, Inc.Item Open Access Respiratory physiology and the initiation of molting in the tobacco hornworm, Manduca sexta(INTEGRATIVE AND COMPARATIVE BIOLOGY, 2011-03) Callier, V; Nijhout, HFItem Open Access Serotonin synthesis, release and reuptake in terminals: a mathematical model.(Theor Biol Med Model, 2010-08-19) Best, Janet; Nijhout, H Frederik; Reed, MichaelBACKGROUND: Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system. METHODS: We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data. RESULTS: We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct in silico experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to experimental data. Finally, we study how the properties of the the serotonin transporter and the autoreceptors give rise to the time courses of extracellular serotonin in various projection regions after a dose of fluoxetine. CONCLUSIONS: Serotonergic systems must respond robustly to important biological signals, while at the same time maintaining homeostasis in the face of normal biological fluctuations in inputs, expression levels, and firing rates. This is accomplished through the cooperative effect of many different homeostatic mechanisms including special properties of the serotonin transporters and the serotonin autoreceptors. Many difficult questions remain in order to fully understand how serotonin biochemistry affects serotonin electrophysiology and vice versa, and how both are changed in the presence of selective serotonin reuptake inhibitors. Mathematical models are useful tools for investigating some of these questions.Item Open Access Systems Biology of Phenotypic Robustness and Plasticity.(Integr Comp Biol, 2017-08-01) Nijhout, H Frederik; Sadre-Marandi, Farrah; Best, Janet; Reed, Michael CSYNOPSIS: Gene regulatory networks, cellular biochemistry, tissue function, and whole body physiology are imbued with myriad overlapping and interacting homeostatic mechanisms that ensure that many phenotypes are robust to genetic and environmental variation. Animals also often have plastic responses to environmental variables, which means that many different phenotypes can correspond to a single genotype. Since natural selection acts on phenotypes, this raises the question of how selection can act on the genome if genotypes are decoupled from phenotypes by robustness and plasticity mechanisms. The answer can be found in the systems biology of the homeostatic mechanisms themselves. First, all such mechanisms operate over a limited range and outside that range the controlled variable changes rapidly allowing natural selection to act. Second, mutations and environmental stressors can disrupt homeostatic mechanisms, exposing cryptic genetic variation and allowing natural selection to act. We illustrate these ideas by examining the systems biology of four specific examples. We show how it is possible to analyze and visualize the roles of specific genes and specific polymorphisms in robustness in the context of large and realistic nonlinear systems. We also describe a new method, system population models, that allows one to connect causal dynamics to the variable outcomes that one sees in biological populations with large variation.Item Open Access The Allometry of Giant Flightless Birds(2007-05-10T14:55:00Z) Dickison, Michael R.Despite our intuition, birds are no smaller than mammals when the constraints of a flying body plan are taken into account. Nevertheless, the largest mammals are ten times the mass of the largest birds. Allometric equations generated for anseriforms and ratites suggest mid-shaft femur circumference is the best measure to use in estimating avian body mass. The small sample size of extant ratites makes mass estimate extrapolation to larger extinct species inaccurate. The division of ratites into cursorial and graviportal groups is supported. Aepyornithids do not show atypical femoral shaft asymmetry. New and more accurate estimates of egg masses, and separate male and female body masses for sexually-dimorphic ratites are generated. Egg mass scaling exponents for individual bird orders differ from that Aves as a whole, probably due to between-taxa effects. Ratite egg mass does not scale with the same exponent as other avian orders, whether kiwi are included or excluded. Total clutch mass in ratites, however, scales similarly to egg mass in other birds, perhaps as a consequence of the extreme variation in ratite clutch size. Kiwi and elephant bird eggs are consistent with the allometric trend for ratites as a whole, taking clutch size into account. Thus kiwi egg mass is probably an adaptation for a precocial life history, not a side effect of their being a dwarfed descendant of a moa-sized ancestor. Relatively small body size in ancestral kiwis is consistent with a trans-oceanic dispersal to New Zealand in the Tertiary, as suggested by recent molecular trees. This implies multiple loss of flight in Tertiary ratite lineages, which is supported by biogeographic, molecular, paleontological, and osteological evidence, but which is not the currently prevailing hypothesis.Item Open Access The Physiological Basis of Developmental Plasticity(2019) McKenna, Kenneth ZacheryOrganismal form emerges from the relative growth of the body and its parts. In this dissertation, I address how developmental processes produce the size relationships between body parts that shape the characteristic morphologies of animals and plants. Specifically, I study the nutrition-dependent growth of wings in butterflies and moths to determine the developmental physiological mechanisms underlying morphological scaling relationships. Additionally, I dive into how form within a tissue is established by studying the mechanism that patterns growth of butterfly wings. Using an extensive data set from rats fed on a low protein diet, I analyze how different bones respond to nutritional variation and its effect on morphological integration. Finally, I end with a theoretical chapter discussing the ways in which development can be plastic and how that shapes both genetic and phenotypic evolution. I find that developmental plasticity emerges from changes in the concentration of systemic hormones in response to environmental stimuli. Hormones, in turn, interact with every developing part. This interaction is characterized by character-specific gene regulatory networks that affect their sensitivity to hormones. Thus, developmental plasticity emerges from the interplay between the organism sensing the environment that tunes the strength of a systemic signal that moderates development, and character-specific use of molecular networks that defines the range of character states in response to signal variation.
Item Open Access The Regulation of Body and Wing Disk Growth in Manduca Sexta(2009) Tobler, AlexandraA key question in developmental biology is how organisms attain a final size. Deviations in growth patterns can produce different/new phenotypes and these changes can play fundamental roles in ecology and evolution. The size of an organism and of its constitutive organs is determined by the growth rate and the duration of the growing period. In insects, peptide hormones such as insulin-like growth factors have been shown to be involved in determining the growth rates by coordinating metabolism, cell proliferation and cell size. In contrast, steroid hormones, such as ecdysone, are involved in determining life stage transitions, and thus the termination of the growing period. Although it is clear that insulin and steroid hormones are both involved in the regulation of growth, the ways in which these two regulators interact is yet to be determined. Furthermore, it is not clear how organs and body growth are coordinated during development to arrive to their correct proportions. In this study, using the tobacco hornworm Manduca sexta and its wings as a model system, I examine the developmental mechanisms involved in the regulation of organ growth and how developmental processes can drive morphological evolution. First, I examine how the hormonal events that take place during the termination of the body growth period affect wing disk growth. Second, by using gene expression assays and in vitro cultures, I examine the interaction between bombyxin, the Lepidopteran insulin-like growth factor, and ecdysone, the molting hormone, and their contributions to wing imaginal disk growth. Finally, by using three different size strains of M. sexta, I examine the developmental basis of the allometric relationship between the wings and the body. My results show that during the final instar of M. sexta larval development, wing imaginal disks are sensitive to the hormonal events that terminate the growth period. Furthermore, I show that the bombyxin requirement for wing disk growth is restricted to the early days of the final instar unlike the constitutive effects seen in other species. After the larva has passed a particular critical weight, bombyxin is not necessary for wing disk growth, although its absence does decrease the growth rate. In contrast, ecdysone is required for promoting the growth of wing imaginal disks primarily through its stimulation of cell proliferation. Finally, I show how selection on body size has unpredictable consequence for the response of wing size. These results demonstrate how specific allometries have a developmental basis in the cross-talk of the various signals that regulate growth itself. Therefore, direct selection on allometric relationships may not need to be strong in order to hold scaling relationships constant, at least over short evolutionary periods.
Item Open Access The Role of Threshold Size in Insect Metamorphosis and Body Size Regulation(2010) Preuss, Kevin MichaelThe initiation of metamorphosis causes the cessation of the larval growth period which determines the final body size of adult insects. Because larval growth is roughly exponential, differences in timing the initiation of metamorphosis can cause large differences body size. Although many of the processes involved in metamorphosis have been well characterized, little is known about how the timing of the initiation of metamorphosis is determined.
Using different strains from Tribolium castaneum, Tribolium freemani, and Manduca sexta and varied nutritional conditions, I was able to document the existence of a threshold size, which determines when the larva becomes competent to metamorphose. Threshold size, however, does not dictate the exact timing of initiation. The exact timing for the initiation of metamorphosis is determined by a pulse of the molting hormone, ecdysone, but only after threshold size has been reached. Ecdysone pulses before the larva attains threshold size only cause the larva to molt to another larval instar. These results indicate the timing of metamorphosis initiation is controlled by two factors: (1) attainment of threshold size, at which the larva becomes competent to initiate metamorphosis and (2) the timing of an ecdysone pulse after attaining threshold size.
I hypothesize the attainment of threshold size, and therefore competence to metamorphose, is mediated by the effect of changing juvenile hormone concentrations caused by the increase in size of the larva. While the larval body grows nearly exponentially, the corpora allata, which secretes juvenile hormone, grows very little if at all. The difference in relative growth causes juvenile hormone concentrations to gradually become diluted. When juvenile hormone concentrations fall below a threshold, changes in protein-protein binding occur that can cause changes in signaling networks and ultimately gene expression. These changes make the larva competent for metamorphosis.
I have demonstrated that only threshold size is consistently correlated with body size; other growth parameters such as growth rate, duration of instars, or number of instars do not consistently correlate with variation in body size. Using the black mutant strain of M. sexta I have shown that lower juvenile hormone titers correlate with lower threshold sizes. My hypothesis is consistent with the large body of literature indicating the involvement of juvenile hormone. I also hypothesize that the diversity of metamorphosis types in holometabolous insects can be explained by heterochronic shifts in the timing of threshold size and other developmental events related to metamorphosis. The heterochronic shifts affect not only the morphology of organs, but can also affect the overall phenotypic response of the larva to changes in the environment. The different phenotypic responses among species may make the more or less suited for certain types of niches.
Item Open Access To plasticity and back again.(Elife, 2015-03-12) Nijhout, H FrederikBoth the gain and the loss of flexibility in the development of phenotypes have led to an increased diversity of physical forms in nematode worms.