Browsing by Author "Noble, Paul W"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Airway fibroblasts in asthma manifest an invasive phenotype.(American journal of respiratory and critical care medicine, 2011-06) Ingram, Jennifer L; Huggins, Molly J; Church, Tony D; Li, Yuejuan; Francisco, Dave C; Degan, Simone; Firszt, Rafael; Beaver, Denise M; Lugogo, Njira L; Wang, Ying; Sunday, Mary E; Noble, Paul W; Kraft, MonicaRationale
Invasive cell phenotypes have been demonstrated in malignant transformation, but not in other diseases, such as asthma. Cellular invasiveness is thought to be mediated by transforming growth factor (TGF)-β1 and matrix metalloproteinases (MMPs). IL-13 is a key T(H)2 cytokine that directs many features of airway remodeling through TGF-β1 and MMPs.Objectives
We hypothesized that, in human asthma, IL-13 stimulates increased airway fibroblast invasiveness via TGF-β1 and MMPs in asthma compared with normal controls.Methods
Fibroblasts were cultured from endobronchial biopsies in 20 subjects with mild asthma (FEV(1): 90 ± 3.6% pred) and 17 normal control subjects (FEV(1): 102 ± 2.9% pred) who underwent bronchoscopy. Airway fibroblast invasiveness was investigated using Matrigel chambers. IL-13 or IL-13 with TGF-β1 neutralizing antibody or pan-MMP inhibitor (GM6001) was added to the lower chamber as a chemoattractant. Flow cytometry and immunohistochemistry were performed in a subset of subjects to evaluate IL-13 receptor levels.Measurements and main results
IL-13 significantly stimulated invasion in asthmatic airway fibroblasts, compared with normal control subjects. Inhibitors of both TGF-β1 and MMPs blocked IL-13-induced invasion in asthma, but had no effect in normal control subjects. At baseline, in airway tissue, IL-13 receptors were expressed in significantly higher levels in asthma, compared with normal control subjects. In airway fibroblasts, baseline IL-13Rα2 was reduced in asthma compared with normal control subjects.Conclusions
IL-13 potentiates airway fibroblast invasion through a mechanism involving TGF-β1 and MMPs. IL-13 receptor subunits are differentially expressed in asthma. These effects may result in IL-13-directed airway remodeling in asthma.Item Open Access Role of hyaluronan and hyaluronan-binding proteins in human asthma.(The Journal of allergy and clinical immunology, 2011-08) Liang, Jiurong; Jiang, Dianhua; Jung, Yoosun; Xie, Ting; Ingram, Jennifer; Church, Tony; Degan, Simone; Leonard, Maura; Kraft, Monica; Noble, Paul WBackground
The characteristics of human asthma are chronic inflammation and airway remodeling. Hyaluronan, a major extracellular matrix component, accumulates during inflammatory lung diseases, including asthma. Hyaluronan fragments stimulate macrophages to produce inflammatory cytokines. We hypothesized that hyaluronan and its receptors would play a role in human asthma.Objective
To investigate the role of hyaluronan and hyaluronan-binding proteins in human asthma.Methods
Twenty-one subjects with asthma and 25 healthy control subjects underwent bronchoscopy with endobronchial biopsy and bronchoalveolar lavage. Fibroblasts were cultured, and hyaluronan and hyaluronan synthase expression was determined at baseline and after exposure to several mediators relevant to asthma pathobiology. The expression of hyaluronan-binding proteins CD44, TLR (Toll-like receptor)-2, and TLR4 on bronchoalveolar lavage macrophages was determined by flow cytometry. IL-8 production by macrophages in response to hyaluronan fragment stimulation was compared.Results
Airway fibroblasts from patients with asthma produced significantly increased concentrations of lower-molecular-weight hyaluronan compared with those of normal fibroblasts. Hyaluronan synthase 2 mRNA was markedly increased in asthmatic fibroblasts. Asthmatic macrophages showed a decrease in cell surface CD44 expression and an increase in TLR2 and TLR4 expression. Macrophages from subjects with asthma showed an increase in responsiveness to low-molecular-weight hyaluronan stimulation, as demonstrated by increased IL-8 production.Conclusion
Hyaluronan homeostasis is deranged in asthma, with increased production by fibroblasts and decreased CD44 expression on alveolar macrophages. Upregulation of TLR2 and TLR4 on macrophages with increased sensitivity to hyaluronan fragments suggests a novel proinflammatory mechanism by which persistence of hyaluronan fragments could contribute to chronic inflammation and airway remodeling in asthma.Item Open Access Targeted HAS2 Expression Lessens Airway Responsiveness in Chronic Murine Allergic Airway Disease.(American journal of respiratory cell and molecular biology, 2017-12) Walker, Julia KL; Theriot, Barbara S; Ghio, Michael; Trempus, Carol S; Wong, Jordan E; McQuade, Victoria L; Liang, Jiurong; Jiang, Dianhua; Noble, Paul W; Garantziotis, Stavros; Kraft, Monica; Ingram, Jennifer LHyaluronan (HA), a major component of the extracellular matrix, is secreted by airway structural cells. Airway fibroblasts in allergic asthma secrete elevated levels of HA in association with increased HA synthase 2 (HAS2) expression. Thus, we hypothesized that HA accumulation in the airway wall may contribute to airway remodeling and hyperresponsiveness in allergic airways disease. To examine this hypothesis, transgenic mice in which the α-smooth muscle actin (α-SMA) promoter drives HAS2 expression were generated. Mixed male and female α-SMA-HAS2 mice (HAS2+ mice, n = 16; HAS2- mice, n = 13) were sensitized via intraperitoneal injection and then chronically challenged with aerosolized ovalbumin (OVA) for 6 weeks. To test airway responsiveness, increasing doses of methacholine were delivered intravenously and airway resistance was measured using the forced oscillation technique. HA, cytokines, and cell types were analyzed in bronchoalveolar lavage fluid, serum, and whole lung homogenates. Lung sections were stained using antibodies specific for HA-binding protein (HABP) and α-SMA, as well as Masson's trichrome stain. Staining of lung tissue demonstrated significantly increased peribronchial HA, α-SMA, and collagen deposition in OVA-challenged α-SMA-HAS2+ mice compared with α-SMA-HAS2- mice. Unexpectedly, OVA-challenged α-SMA-HAS2+ mice displayed significantly reduced airway responsiveness to methacholine compared with similarly treated α-SMA-HAS2- mice. The total numbers of inflammatory cell types in the bronchoalveolar lavage fluid did not differ significantly between OVA-challenged α-SMA-HAS2+ mice and α-SMA-HAS2- mice. We conclude that allergen-challenged mice that overexpress HAS2 in myofibroblasts and smooth muscle cells develop increased airway fibrosis, which lessens airway hyperresponsiveness to bronchoconstrictors.Item Open Access Type 2 alveolar cells are stem cells in adult lung.(The Journal of clinical investigation, 2013-07) Barkauskas, Christina E; Cronce, Michael J; Rackley, Craig R; Bowie, Emily J; Keene, Douglas R; Stripp, Barry R; Randell, Scott H; Noble, Paul W; Hogan, Brigid LMGas exchange in the lung occurs within alveoli, air-filled sacs composed of type 2 and type 1 epithelial cells (AEC2s and AEC1s), capillaries, and various resident mesenchymal cells. Here, we use a combination of in vivo clonal lineage analysis, different injury/repair systems, and in vitro culture of purified cell populations to obtain new information about the contribution of AEC2s to alveolar maintenance and repair. Genetic lineage-tracing experiments showed that surfactant protein C-positive (SFTPC-positive) AEC2s self renew and differentiate over about a year, consistent with the population containing long-term alveolar stem cells. Moreover, if many AEC2s were specifically ablated, high-resolution imaging of intact lungs showed that individual survivors undergo rapid clonal expansion and daughter cell dispersal. Individual lineage-labeled AEC2s placed into 3D culture gave rise to self-renewing "alveolospheres," which contained both AEC2s and cells expressing multiple AEC1 markers, including HOPX, a new marker for AEC1s. Growth and differentiation of the alveolospheres occurred most readily when cocultured with primary PDGFRα⁺ lung stromal cells. This population included lipofibroblasts that normally reside close to AEC2s and may therefore contribute to a stem cell niche in the murine lung. Results suggest that a similar dynamic exists between AEC2s and mesenchymal cells in the human lung.