Browsing by Author "Nousek McGregor, Anna Elizabeth"
Results Per Page
Sort Options
Item Open Access The cost of locomotion in North Atlantic right whales (Eubalaena glacialis)(2010) Nousek McGregor, Anna ElizabethLocomotion in any environment requires the use of energy to overcome the physical
forces inherent in the environment. Most large marine vertebrates have evolved
streamlined fusiform body shapes to minimize the resistive force of drag when in
a neutral position, but nearly all behaviors result in some increase in that force.
Too much energy devoted to locomotion may reduce the available surplus necessary
for population-level factors such as reproduction. The population of North Atlantic
right whales has not recovered following legal protection due to decreased fecundity,
including an increase in the intercalf interval, an increase in the years to first calf and
an increase in the number of nulliparous females in the population. This reproductive
impairment appears to be related to deficiencies in storing enough energy to meet the
costs of reproduction. The goal of this study was to determine whether increases in
moving between prey patches at the cost of decreased foraging opportunities could
shift these whales into a situation of negative energy gain. The first step is to
understand the locomotor costs for this species for the key behaviors of traveling and
foraging.
This study investigated the cost of locomotion in right whales by recording the
submerged diving behaviors of free-ranging individuals in both their foraging habitat
in the Bay of Fundy and their calving grounds in the South Atlantic Bight with a
suction-cupped archival tag. The data from the tags were used to quantify the oc-
currence of different behaviors and their associated swimming behaviors and explore
three behavioral strategies that reduce locomotor costs. First, the influence that
changes in blubber thickness has on the buoyancy of these whales was investigated
by comparing the descent and ascent glide durations of individual whales with differ-
ent blubber thicknesses. Next, the depth of surface dives made by animals of different
sizes was related to the depth where additional wave drag is generated. Finally, the
use of intermittent locomotion during foraging was investigated to understand how
much energy is saved by using this gait. The final piece in this study was to deter-
mine the drag related to traveling and foraging behaviors from glides recorded by
the tags and from two different numerical simulations of flow around whales. One, a
custom developed algorithm for multiphase flow, was used to determine the relative
drag, while a second commercial package was used to determine the absolute mag-
nitude of the drag force on the simplest model, the traveling animal. The resulting
drag estimates were then used in a series of theoretical models that estimated the
energetic profit remaining after shifts in the occurrence of traveling and searching
behaviors.
The diving behavior of right whales can be classified into three stereotyped be-
haviors that are characterized by differences in the time spent in different parts of the
water column. The time budgets and swimming movements during these behaviors
matched those in other species, enabling the dive shapes to be classified as foraging,
searching and traveling behaviors. Right whales with thicker blubber layers were
found to perform longer ascent glides and shorter descent glides than those with
thinner blubber layers, consistent with the hypothesis that positive buoyancy does
influence their vertical diving behavior. During horizontal traveling, whales made
shallow dives to depths that were slightly deeper than those that would cause ad-
ditional costs due to wave drag. These dives appear to allow whales to both avoid
the costs of diving as well as the costs of swimming near the surface. Next, whales
were found to glide for 12% of the bottom phases of their foraging dives, and the
use of `stroke-glide' swimming did not prolong foraging duration from that used by
continuous swimmers. Drag coefficients estimated from these glides had an average
of 0.014 during foraging dives and 0.0052 during traveling, values which fall in the
range of those reported for other marine mammals. One numerical simulation deter-
mined drag forces to be comparable, while the other drastically underestimated the
drag of all behaviors. Finally, alterations to the behavioral budgets of these animals
demonstrated their cost of locomotion constitutes a small portion (8-12%) of the
total energy consumed and only extreme increases in traveling time could result in a
negative energy balance. In summary, these results show that locomotor costs are no
more expensive in this species than those of other cetaceans and that when removed
from all the other stressors on this population, these whales are not on an energetic
`knife edge'.