# Browsing by Author "Novais, E"

Now showing 1 - 3 of 3

###### Results Per Page

###### Sort Options

Item Open Access Bound on quantum computation time: Quantum error correction in a critical environment(Physical Review A - Atomic, Molecular, and Optical Physics, 2010-08-31) Novais, E; Mucciolo, ER; Baranger, HUWe obtain an upper bound on the time available for quantum computation for a given quantum computer and decohering environment with quantum error correction implemented. First, we derive an explicit quantum evolution operator for the logical qubits and show that it has the same form as that for the physical qubits but with a reduced coupling strength to the environment. Using this evolution operator, we find the trace distance between the real and ideal states of the logical qubits in two cases. For a super-Ohmic bath, the trace distance saturates, while for Ohmic or sub-Ohmic baths, there is a finite time before the trace distance exceeds a value set by the user. © 2010 The American Physical Society.Item Open Access Conductance of a dissipative quantum dot: Nonequilibrium crossover near a non-Fermi-liquid quantum critical point(Physical Review B, 2021-10-25) Zhang, Gu; Novais, E; Baranger, Harold UWe find the nonlinear conductance of a dissipative resonant level in the nonequilibrium steady state near its quantum critical point. The system consists of a spin-polarized quantum dot connected to two resistive leads that provide ohmic dissipation. We focus on the crossover from the strong-coupling, non-Fermi-liquid regime to the weak-coupling, Fermi-liquid ground state, a crossover driven by the instability of the quantum critical point to hybridization asymmetry or detuning of the level in the dot. We show that the crossover properties are given by tunneling through an effective single barrier described by the boundary sine-Gordon model. The nonlinear conductance is then obtained from thermodynamic Bethe ansatz results in the literature, which were developed to treat tunneling in a Luttinger liquid. The current-voltage characteristics are thus found for any value of the resistance of the leads. For the special case of lead resistance equal to the quantum resistance, we find mappings onto, first, the two-channel Kondo model and, second, an effectively noninteracting model from which the nonlinear conductance is found analytically. A key feature of the general crossover function is that the nonequilibrium crossover driven by applied bias is different from the crossover driven by temperature—we find that the nonequilibrium crossover is substantially sharper. Finally, we compare to experimental results for both the bias and temperature crossovers: the agreement is excellent.Item Open Access Rescuing a Quantum Phase Transition with Quantum Noise.(Physical review letters, 2017-02) Zhang, Gu; Novais, E; Baranger, Harold UWe show that placing a quantum system in contact with an environment can enhance non-Fermi-liquid correlations, rather than destroy quantum effects, as is typical. The system consists of two quantum dots in series with two leads; the highly resistive leads couple charge flow through the dots to the electromagnetic environment, the source of quantum noise. While the charge transport inhibits a quantum phase transition, the quantum noise reduces charge transport and restores the transition. We find a non-Fermi-liquid intermediate fixed point for all strengths of the noise. For strong noise, it is similar to the intermediate fixed point of the two-impurity Kondo model.