Browsing by Author "Okouyi, Joseph"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access African forest elephant movements depend on time scale and individual behavior.(Scientific reports, 2021-06-16) Beirne, Christopher; Houslay, Thomas M; Morkel, Peter; Clark, Connie J; Fay, Mike; Okouyi, Joseph; White, Lee JT; Poulsen, John RThe critically endangered African forest elephant (Loxodonta cyclotis) plays a vital role in maintaining the structure and composition of Afrotropical forests, but basic information is lacking regarding the drivers of elephant movement and behavior at landscape scales. We use GPS location data from 96 individuals throughout Gabon to determine how five movement behaviors vary at different scales, how they are influenced by anthropogenic and environmental covariates, and to assess evidence for behavioral syndromes-elephants which share suites of similar movement traits. Elephants show some evidence of behavioral syndromes along an 'idler' to 'explorer' axis-individuals that move more have larger home ranges and engage in more 'exploratory' movements. However, within these groups, forest elephants express remarkable inter-individual variation in movement behaviours. This variation highlights that no two elephants are the same and creates challenges for practitioners aiming to design conservation initiatives.Item Open Access Poaching empties critical Central African wilderness of forest elephants.(Curr Biol, 2017-02-20) Poulsen, John R; Koerner, Sally E; Moore, Sarah; Medjibe, Vincent P; Blake, Stephen; Clark, Connie J; Akou, Mark Ella; Fay, Michael; Meier, Amelia; Okouyi, Joseph; Rosin, Cooper; White, Lee JTElephant populations are in peril everywhere, but forest elephants in Central Africa have sustained alarming losses in the last decade [1]. Large, remote protected areas are thought to best safeguard forest elephants by supporting large populations buffered from habitat fragmentation, edge effects and human pressures. One such area, the Minkébé National Park (MNP), Gabon, was created chiefly for its reputation of harboring a large elephant population. MNP held the highest densities of elephants in Central Africa at the turn of the century, and was considered a critical sanctuary for forest elephants because of its relatively large size and isolation. We assessed population change in the park and its surroundings between 2004 and 2014. Using two independent modeling approaches, we estimated a 78-81% decline in elephant numbers over ten years - a loss of more than 25,000 elephants. While poaching occurs from within Gabon, cross-border poaching largely drove the precipitous drop in elephant numbers. With nearly 50% of forest elephants in Central Africa thought to reside in Gabon [1], their loss from the park is a considerable setback for the preservation of the species.Item Open Access Vertebrate community composition and diversity declines along a defaunation gradient radiating from rural villages in Gabon(Journal of Applied Ecology, 2017-06-01) Koerner, Sally E; Poulsen, John R; Blanchard, Emily J; Okouyi, Joseph; Clark, Connie J© 2016 The Authors. Journal of Applied Ecology © 2016 British Ecological Society Anthropocene defaunation is the global phenomenon of human-induced animal biodiversity loss. Understanding the patterns and process of defaunation is critical to predict outcomes for wildlife populations and cascading consequences for ecosystem function and human welfare. We investigated a defaunation gradient in north-eastern Gabon by establishing 24 transects at varying distances (2–30 km) to rural villages and surveying the abundance and composition of vertebrate communities. Distance from village was positively correlated with observations of hunting (shotgun shells, campfires, hunters), making it a good proxy for hunting pressure. Species diversity declined significantly with proximity to village, with mammal richness increasing by roughly 1·5 species every 10 km travelled away from a village. Compared to forest far from villages, the wildlife community near villages consisted of higher abundances of large birds and rodents and lower abundances of large mammals like monkeys and ungulates. Distance to nearest village emerged as a key driver of the relative abundance of five of the six taxonomic guilds, indicating that the top-down force of hunting strongly influences large vertebrate community composition and structure. Several measures of vegetation structure also explained animal abundance, but these varied across taxonomic guilds. Forest elephants were the exception: no measured variable or combination of variables explained variation in elephant abundances. Synthesis and applications. Hunting is concentrated within 10 km around villages, creating a hunting halo characterized by heavily altered animal communities composed of relatively small-bodied species. Although the strongest anthropogenic effects are relatively distance-limited, the linear increase in species richness shown here even at distances 30 km from villages suggests that hunting may have altered vertebrate abundances across the entire landscape. Central African forests store > 25% of the carbon in tropical forests and are home to 3000 endemic species, but roughly 53% of the region lies within the village hunting halo. Resource management strategies should take into account this hunting-induced spatial variation in animal communities. Near villages, resource management should focus on sustainable community-led hunting programmes that provide long-term supplies of wild meat to rural people. Resource management far from villages should focus on law enforcement and promoting industry practices that maintain remote tracts of land to preserve ecosystem services like carbon storage and biodiversity.