Browsing by Author "Olson, Lyra B"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Combining Heparin and a FX/Xa Aptamer to Reduce Thrombin Generation in Cardiopulmonary Bypass and COVID-19.(Nucleic acid therapeutics, 2022-01-12) Chabata, Charlene V; Frederiksen, James W; Olson, Lyra B; Naqvi, Ibtehaj A; Hall, Sharon E; Gunaratne, Ruwan; Kraft, Bryan D; Que, Loretta G; Chen, Lingye; Sullenger, Bruce AKnown limitations of unfractionated heparin (UFH) have encouraged the evaluation of anticoagulant aptamers as alternatives to UFH in highly procoagulant settings such as cardiopulmonary bypass (CPB). Despite progress, these efforts have not been totally successful. We take a different approach and explore whether properties of an anticoagulant aptamer can complement UFH, rather than replace it, to address shortcomings with UFH use. Combining RNA aptamer 11F7t, which targets factor X/Xa, with UFH (or low molecular weight heparin) yields a significantly enhanced anticoagulant cocktail effective in normal and COVID-19 patient blood. This aptamer-UFH combination (1) supports continuous circulation of human blood through an ex vivo membrane oxygenation circuit, as is required for patients undergoing CPB and COVID-19 patients requiring extracorporeal membrane oxygenation, (2) allows for a reduced level of UFH to be employed, (3) more effectively limits thrombin generation compared to UFH alone, and (4) is rapidly reversed by the administration of protamine sulfate, the standard treatment for reversing UFH clinically following CPB. Thus, the combination of factor X/Xa aptamer and UFH has significantly improved anticoagulant properties compared to UFH alone and underscores the potential of RNA aptamers to improve medical management of acute care patients requiring potent yet rapidly reversible anticoagulation.Item Open Access COVID-19: Thrombosis, thromboinflammation, and anticoagulation considerations.(International journal of laboratory hematology, 2021-07) Levy, Jerrold H; Iba, Toshiaki; Olson, Lyra B; Corey, Kristen M; Ghadimi, Kamrouz; Connors, Jean MVascular endothelial injury is a hallmark of acute infection at both the microvascular and macrovascular levels. The hallmark of SARS-CoV-2 infection is the current COVID-19 clinical sequelae of the pathophysiologic responses of hypercoagulability and thromboinflammation associated with acute infection. The acute lung injury that initially occurs in COVID-19 results from vascular and endothelial damage from viral injury and pathophysiologic responses that produce the COVID-19-associated coagulopathy. Clinicians should continue to focus on the vascular endothelial injury that occurs and evaluate potential therapeutic interventions that may benefit those with new infections during the current pandemic as they may also be of benefit for future pathogens that generate similar thromboinflammatory responses. The current Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) studies are important projects that will further define our management strategies. At the time of writing this report, two mRNA vaccines are now being distributed and will hopefully have a major impact on slowing the global spread and subsequent thromboinflammatory injury we see clinically in critically ill patients.Item Open Access Key Pathogenic Factors in Coronavirus Disease 2019-Associated Coagulopathy and Acute Lung Injury Highlighted in a Patient With Copresentation of Acute Myelocytic Leukemia: A Case Report.(A&A practice, 2021-03-30) Olson, Lyra B; Naqvi, Ibtehaj A; Turner, Daniel J; Morrison, Sarah A; Kraft, Bryan D; Chen, Lingye; Sullenger, Bruce A; Nair, Smita K; Que, Loretta G; Levy, Jerrold HThe role of concurrent illness in coronavirus disease 2019 (COVID-19) is unknown. Patients with leukemia may display altered thromboinflammatory responses. We report a 53-year-old man presenting with acute leukemia and COVID-19 who developed thrombotic complications and acute respiratory distress syndrome. Multiple analyses, including rotational thromboelastometry and flow cytometry on blood and bronchoalveolar lavage, are reported to characterize coagulation and immune profiles. The patient developed chemotherapy-induced neutropenia that may have protected his lungs from granulocyte-driven hyperinflammatory acute lung injury. However, neutropenia also alters viral clearing, potentially enabling ongoing viral propagation. This case depicts a precarious equilibrium between leukemia and COVID-19.