Browsing by Author "Pace, Nathan L"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access An evaluation of remifentanil-sevoflurane response surface models in patients emerging from anesthesia: model improvement using effect-site sevoflurane concentrations.(Anesth Analg, 2010-08) Johnson, Ken B; Syroid, Noah D; Gupta, Dhanesh K; Manyam, Sandeep C; Pace, Nathan L; LaPierre, Cris D; Egan, Talmage D; White, Julia L; Tyler, Diane; Westenskow, Dwayne RINTRODUCTION: We previously reported models that characterized the synergistic interaction between remifentanil and sevoflurane in blunting responses to verbal and painful stimuli. This preliminary study evaluated the ability of these models to predict a return of responsiveness during emergence from anesthesia and a response to tibial pressure when patients required analgesics in the recovery room. We hypothesized that model predictions would be consistent with observed responses. We also hypothesized that under non-steady-state conditions, accounting for the lag time between sevoflurane effect-site concentration (Ce) and end-tidal (ET) concentration would improve predictions. METHODS: Twenty patients received a sevoflurane, remifentanil, and fentanyl anesthetic. Two model predictions of responsiveness were recorded at emergence: an ET-based and a Ce-based prediction. Similarly, 2 predictions of a response to noxious stimuli were recorded when patients first required analgesics in the recovery room. Model predictions were compared with observations with graphical and temporal analyses. RESULTS: While patients were anesthetized, model predictions indicated a high likelihood that patients would be unresponsive (> or = 99%). However, after termination of the anesthetic, models exhibited a wide range of predictions at emergence (1%-97%). Although wide, the Ce-based predictions of responsiveness were better distributed over a percentage ranking of observations than the ET-based predictions. For the ET-based model, 45% of the patients awoke within 2 min of the 50% model predicted probability of unresponsiveness and 65% awoke within 4 min. For the Ce-based model, 45% of the patients awoke within 1 min of the 50% model predicted probability of unresponsiveness and 85% awoke within 3.2 min. Predictions of a response to a painful stimulus in the recovery room were similar for the Ce- and ET-based models. DISCUSSION: Results confirmed, in part, our study hypothesis; accounting for the lag time between Ce and ET sevoflurane concentrations improved model predictions of responsiveness but had no effect on predicting a response to a noxious stimulus in the recovery room. These models may be useful in predicting events of clinical interest but large-scale evaluations with numerous patients are needed to better characterize model performance.Item Open Access Demonstration and Performance Evaluation of Two Novel Algorithms for Removing Artifacts From Automated Intraoperative Temperature Data Sets: Multicenter, Observational, Retrospective Study.(JMIR perioperative medicine, 2022-10) Bardia, Amit; Deshpande, Ranjit; Michel, George; Yanez, David; Dai, Feng; Pace, Nathan L; Schuster, Kevin; Mathis, Michael R; Kheterpal, Sachin; Schonberger, Robert BBackground
The automated acquisition of intraoperative patient temperature data via temperature probes leads to the possibility of producing a number of artifacts related to probe positioning that may impact these probes' utility for observational research.Objective
We sought to compare the performance of two de novo algorithms for filtering such artifacts.Methods
In this observational retrospective study, the intraoperative temperature data of adults who received general anesthesia for noncardiac surgery were extracted from the Multicenter Perioperative Outcomes Group registry. Two algorithms were developed and then compared to the reference standard-anesthesiologists' manual artifact detection process. Algorithm 1 (a slope-based algorithm) was based on the linear curve fit of 3 adjacent temperature data points. Algorithm 2 (an interval-based algorithm) assessed for time gaps between contiguous temperature recordings. Sensitivity and specificity values for artifact detection were calculated for each algorithm, as were mean temperatures and areas under the curve for hypothermia (temperatures below 36 C) for each patient, after artifact removal via each methodology.Results
A total of 27,683 temperature readings from 200 anesthetic records were analyzed. The overall agreement among the anesthesiologists was 92.1%. Both algorithms had high specificity but moderate sensitivity (specificity: 99.02% for algorithm 1 vs 99.54% for algorithm 2; sensitivity: 49.13% for algorithm 1 vs 37.72% for algorithm 2; F-score: 0.65 for algorithm 1 vs 0.55 for algorithm 2). The areas under the curve for time × hypothermic temperature and the mean temperatures recorded for each case after artifact removal were similar between the algorithms and the anesthesiologists.Conclusions
The tested algorithms provide an automated way to filter intraoperative temperature artifacts that closely approximates manual sorting by anesthesiologists. Our study provides evidence demonstrating the efficacy of highly generalizable artifact reduction algorithms that can be readily used by observational studies that rely on automated intraoperative data acquisition.