Browsing by Author "Palta, Manisha"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access A Collimator Setting Optimization Algorithm for Dual-Arc Volumetric Modulated Arc Therapy in Pancreas Stereotactic Body Radiation Therapy.(Technology in cancer research & treatment, 2019-01) Li, Xinyi; Wu, Jackie; Palta, Manisha; Zhang, You; Sheng, Yang; Zhang, Jiahan; Wang, ChunhaoPURPOSE:To optimize collimator setting to improve dosimetric quality of pancreas volumetric modulated arc therapy plan for stereotactic body radiation therapy. MATERIALS AND METHODS:Fifty-five volumetric modulated arc therapy cases in stereotactic body radiation therapy of pancreas were retrospectively included in this study with internal review board approval. Different from the routine practice of initializing collimator settings with a template, the proposed algorithm simultaneously optimizes the collimator angles and jaw positions that are customized to the patient geometry. Specifically, this algorithm includes 2 key steps: (1) an iterative optimization algorithm via simulated annealing that generates a set of potential collimator settings from 39 cases with pancreas stereotactic body radiation therapy, and (2) a multi-leaf collimator modulation scoring system that makes the final decision of the optimal collimator settings (collimator angles and jaw positions) based on organs at risk sparing criteria. For validation, the other 16 cases with pancreas stereotactic body radiation therapy were analyzed. Two plans were generated for each validation case, with one plan optimized using the proposed algorithm (Planopt) and the other plan with the template setting (Planconv). Each plan was optimized with 2 full arcs and the same set of constraints for the same case. Dosimetric results were analyzed and compared, including target dose coverage, conformity, organs at risk maximum dose, and modulation complexity score. All results were tested by Wilcoxon signed rank tests, and the statistical significance level was set to .05. RESULTS:Both plan groups had comparable target dose coverage and mean doses of all organs at risk. However, organs at risk (stomach, duodenum, large/small bowel) maximum dose sparing (D0.1 cc and D0.03 cc) was improved in Planopt compared to Planconv. Planopt also showed lower modulation complexity score, which suggests better capability of handling complex shape and sparing organs at risk . CONCLUSIONS:The proposed collimator settings optimization algorithm successfully improved dosimetric performance for dual-arc pancreas volumetric modulated arc therapy plans in stereotactic body radiation therapy of pancreas. This algorithm has the capability of immediate clinical application.Item Open Access A current perspective on stereotactic body radiation therapy for pancreatic cancer.(Onco Targets Ther, 2016) Hong, Julian C; Czito, Brian G; Willett, Christopher G; Palta, ManishaPancreatic cancer is a formidable malignancy with poor outcomes. The majority of patients are unable to undergo resection, which remains the only potentially curative treatment option. The management of locally advanced (unresectable) pancreatic cancer is controversial; however, treatment with either chemotherapy or chemoradiation is associated with high rates of local tumor progression and metastases development, resulting in low survival rates. An emerging local modality is stereotactic body radiation therapy (SBRT), which uses image-guided, conformal, high-dose radiation. SBRT has demonstrated promising local control rates and resultant quality of life with acceptable rates of toxicity. Over the past decade, increasing clinical experience and data have supported SBRT as a local treatment modality. Nevertheless, additional research is required to further evaluate the role of SBRT and improve upon the persistently poor outcomes associated with pancreatic cancer. This review discusses the existing clinical experience and technical implementation of SBRT for pancreatic cancer and highlights the directions for ongoing and future studies.Item Open Access Comparing Survival After Resection, Ablation, and Radiation in Small Intrahepatic Cholangiocarcinoma.(Annals of surgical oncology, 2023-10) Masoud, Sabran J; Rhodin, Kristen E; Kanu, Elishama; Bao, Jiayin; Eckhoff, Austin M; Bartholomew, Alex J; Howell, Thomas C; Aykut, Berk; Kosovec, Juliann E; Palta, Manisha; Befera, Nicholas T; Kim, Charles Y; Herbert, Garth; Shah, Kevin N; Nussbaum, Daniel P; Blazer, Dan G; Zani, Sabino; Allen, Peter J; Lidsky, Michael EBackground
Hepatectomy is the cornerstone of curative-intent treatment for intrahepatic cholangiocarcinoma (ICC). However, in patients unable to be resected, data comparing efficacy of alternatives including thermal ablation and radiation therapy (RT) remain limited. Herein, we compared survival between resection and other liver-directed therapies for small ICC within a national cancer registry.Patients and methods
Patients with clinical stage I-III ICC < 3 cm diagnosed 2010-2018 who underwent resection, ablation, or RT were identified in the National Cancer Database. Overall survival (OS) was compared using Kaplan-Meier and multivariable Cox proportional hazards methods.Results
Of 545 patients, 297 (54.5%) underwent resection, 114 (20.9%) ablation, and 134 (24.6%) RT. Median OS was similar between resection and ablation [50.5 months, 95% confidence interval (CI) 37.5-73.9; 39.5 months, 95% CI 28.7-58.4, p = 0.14], both exceeding that of RT (20.9 months, 95% CI 14.1-28.3). RT patients had high rates of stage III disease (10.4% RT vs. 1.8% ablation vs. 11.8% resection, p < 0.001), but the lowest rates of chemotherapy utilization (9.0% RT vs. 15.8% ablation vs. 38.7% resection, p < 0.001). In multivariable analysis, resection and ablation were associated with reduced mortality compared with RT [hazard ratio (HR) 0.44, 95% CI 0.33-0.58 and HR 0.53, 95% CI 0.38-0.75, p < 0.001, respectively].Conclusion
Resection and ablation were associated with improved survival in patients with ICC < 3 cm compared with RT. Acknowledging confounders, anatomic constraints of ablation, limitations of available data, and need for prospective study, these results favor ablation in small ICC where resection is not feasible.Item Open Access Fluence Map Prediction Using Deep Learning Models - Direct Plan Generation for Pancreas Stereotactic Body Radiation Therapy.(Frontiers in artificial intelligence, 2020-01) Wang, Wentao; Sheng, Yang; Wang, Chunhao; Zhang, Jiahan; Li, Xinyi; Palta, Manisha; Czito, Brian; Willett, Christopher G; Wu, Qiuwen; Ge, Yaorong; Yin, Fang-Fang; Wu, Q JackiePurpose: Treatment planning for pancreas stereotactic body radiation therapy (SBRT) is a difficult and time-consuming task. In this study, we aim to develop a novel deep learning framework to generate clinical-quality plans by direct prediction of fluence maps from patient anatomy using convolutional neural networks (CNNs). Materials and Methods: Our proposed framework utilizes two CNNs to predict intensity-modulated radiation therapy fluence maps and generate deliverable plans: (1) Field-dose CNN predicts field-dose distributions in the region of interest using planning images and structure contours; (2) a fluence map CNN predicts the final fluence map per beam using the predicted field dose projected onto the beam's eye view. The predicted fluence maps were subsequently imported into the treatment planning system for leaf sequencing and final dose calculation (model-predicted plans). One hundred patients previously treated with pancreas SBRT were included in this retrospective study, and they were split into 85 training cases and 15 test cases. For each network, 10% of training data were randomly selected for model validation. Nine-beam benchmark plans with standardized target prescription and organ-at-risk constraints were planned by experienced clinical physicists and used as the gold standard to train the model. Model-predicted plans were compared with benchmark plans in terms of dosimetric endpoints, fluence map deliverability, and total monitor units. Results: The average time for fluence-map prediction per patient was 7.1 s. Comparing model-predicted plans with benchmark plans, target mean dose, maximum dose (0.1 cc), and D95% absolute differences in percentages of prescription were 0.1, 3.9, and 2.1%, respectively; organ-at-risk mean dose and maximum dose (0.1 cc) absolute differences were 0.2 and 4.4%, respectively. The predicted plans had fluence map gamma indices (97.69 ± 0.96% vs. 98.14 ± 0.74%) and total monitor units (2,122 ± 281 vs. 2,265 ± 373) that were comparable to the benchmark plans. Conclusions: We develop a novel deep learning framework for pancreas SBRT planning, which predicts a fluence map for each beam and can, therefore, bypass the lengthy inverse optimization process. The proposed framework could potentially change the paradigm of treatment planning by harnessing the power of deep learning to generate clinically deliverable plans in seconds.Item Open Access Hypofractionated Image-Guided Radiation Therapy With Simultaneous-Integrated Boost Technique for Limited Metastases: A Multi-Institutional Analysis.(Frontiers in Oncology, 2019-01) Jacobs, Corbin D; Palta, Manisha; Williamson, Hannah; Price, Jeremy G; Czito, Brian G; Salama, Joseph K; Moravan, Michael JPurpose: To perform a multi-institutional analysis following treatment of limited osseous and/or nodal metastases in patients using a novel hypofractionated image-guided radiotherapy with simultaneous-integrated boost (HIGRT-SIB) technique. Methods: Consecutive patients treated with HIGRT-SIB for ≤5 active metastases at Duke University Medical Center or Durham Veterans' Affairs Medical Center between 2013 and 2018 were analyzed to determine toxicities and recurrence patterns following treatment. Most patients received 50 Gy to the PTVboost and 30 Gy to the PTVelect simultaneously in 10 fractions. High-dose treatment volume recurrence (HDTVR) and low-dose treatment volume recurrence (LDTVR) were defined as recurrences within PTVboost and PTVelect, respectively. Marginal recurrence (MR) was defined as recurrence outside PTVelect, but within the adjacent bone or nodal chain. Distant recurrence (DR) was defined as recurrences not meeting HDTVR, LDTVR, or MR criteria. Freedom from pain recurrence (FFPR) was calculated in patients with painful osseous metastases prior to HIGRT-SIB. Outcome rates were estimated at 12 months using the Kaplan-Meier method. Results: Forty-two patients met inclusion criteria with 59 sites treated with HIGRT-SIB (53% nodal and 47% osseous). Median time from diagnosis to first metastasis was 31 months and the median age at HIGRT-SIB was 69 years. The most common primary tumors were prostate (36%), gastrointestinal (24%), and lung (24%). Median follow-up was 11 months. One acute grade ≥3 toxicity (febrile neutropenia) occurred after docetaxel administration immediately following HIGRT-SIB. Four patients developed late grade ≥3 toxicities: two ipsilateral vocal cord paralyzes and two vertebral compression fractures. The overall pain response rate was 94% and the estimated FFPR at 12 months was 72%. The estimated 12 month rate of HDTVR, LDTVR, MR, and DR was 3.6, 6.2, 7.6, and 55.8%, respectively. DR preceded MR, HDTVR, or LDTVR in each instance. The estimated 12 month probability of in-field and marginal control was 90.0%. Conclusion: Targeting areas at high-risk for occult disease with a lower radiation dose, while simultaneously boosting gross disease with HIGRT in patients with limited osseous and/or nodal metastases, has a high rate of treated metastasis control, a low rate of MR, acceptable toxicity, and high rate of pain palliation. Further investigation with prospective trials is warranted.