Browsing by Author "Parisi, Giorgio"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Item Open Access Dimensional dependence of the Stokes-Einstein relation and its violation(Journal of Chemical Physics, 2013-10-28) Charbonneau, Benoit; Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Zamponi, FrancescoWe generalize to higher spatial dimensions the Stokes-Einstein relation (SER) as well as the leading correction to diffusivity in finite systems with periodic boundary conditions, and validate these results with numerical simulations. We then investigate the evolution of the high-density SER violation with dimension in simple hard sphere glass formers. The analysis suggests that this SER violation disappears around dimension d u = 8, above which it is not observed. The critical exponent associated with the violation appears to evolve linearly in 8 - d, below d = 8, as predicted by Biroli and Bouchaud [J. Phys.: Condens. Matter 19, 205101 (2007)], but the linear coefficient is not consistent with the prediction. The SER violation with d establishes a new benchmark for theory, and its complete description remains an open problem. © 2013 AIP Publishing LLC.Item Open Access Dimensional study of the caging order parameter at the glass transition.(Proc Natl Acad Sci U S A, 2012-08-28) Charbonneau, Patrick; Ikeda, Atsushi; Parisi, Giorgio; Zamponi, FrancescoThe glass problem is notoriously hard and controversial. Even at the mean-field level, little is agreed upon regarding why a fluid becomes sluggish while exhibiting but unremarkable structural changes. It is clear, however, that the process involves self-caging, which provides an order parameter for the transition. It is also broadly assumed that this cage should have a gaussian shape in the mean-field limit. Here we show that this ansatz does not hold. By performing simulations as a function of spatial dimension d, we find the cage to keep a nontrivial form. Quantitative mean-field descriptions of the glass transition, such as mode-coupling theory, density functional theory, and replica theory, all miss this crucial element. Although the mean-field random first-order transition scenario of the glass transition is qualitatively supported here and non-mean-field corrections are found to remain small on decreasing d, reconsideration of its implementation is needed for it to result in a coherent description of experimental observations.Item Open Access Finite-size effects in the microscopic critical properties of jammed configurations: A comprehensive study of the effects of different types of disorder.(Physical review. E, 2021-07) Charbonneau, Patrick; Corwin, Eric I; Dennis, R Cameron; Díaz Hernández Rojas, Rafael; Ikeda, Harukuni; Parisi, Giorgio; Ricci-Tersenghi, FedericoJamming criticality defines a universality class that includes systems as diverse as glasses, colloids, foams, amorphous solids, constraint satisfaction problems, neural networks, etc. A particularly interesting feature of this class is that small interparticle forces (f) and gaps (h) are distributed according to nontrivial power laws. A recently developed mean-field (MF) theory predicts the characteristic exponents of these distributions in the limit of very high spatial dimension, d→∞ and, remarkably, their values seemingly agree with numerical estimates in physically relevant dimensions, d=2 and 3. These exponents are further connected through a pair of inequalities derived from stability conditions, and both theoretical predictions and previous numerical investigations suggest that these inequalities are saturated. Systems at the jamming point are thus only marginally stable. Despite the key physical role played by these exponents, their systematic evaluation has yet to be attempted. Here, we carefully test their value by analyzing the finite-size scaling of the distributions of f and h for various particle-based models for jamming. Both dimension and the direction of approach to the jamming point are also considered. We show that, in all models, finite-size effects are much more pronounced in the distribution of h than in that of f. We thus conclude that gaps are correlated over considerably longer scales than forces. Additionally, remarkable agreement with MF predictions is obtained in all but one model, namely near-crystalline packings. Our results thus help to better delineate the domain of the jamming universality class. We furthermore uncover a secondary linear regime in the distribution tails of both f and h. This surprisingly robust feature is understood to follow from the (near) isostaticity of our configurations.Item Open Access Fractal free energy landscapes in structural glasses.(Nat Commun, 2014-04-24) Charbonneau, Patrick; Kurchan, Jorge; Parisi, Giorgio; Urbani, Pierfrancesco; Zamponi, FrancescoGlasses are amorphous solids whose constituent particles are caged by their neighbours and thus cannot flow. This sluggishness is often ascribed to the free energy landscape containing multiple minima (basins) separated by high barriers. Here we show, using theory and numerical simulation, that the landscape is much rougher than is classically assumed. Deep in the glass, it undergoes a 'roughness transition' to fractal basins, which brings about isostaticity and marginal stability on approaching jamming. Critical exponents for the basin width, the weak force distribution and the spatial spread of quasi-contacts near jamming can be analytically determined. Their value is found to be compatible with numerical observations. This advance incorporates the jamming transition of granular materials into the framework of glass theory. Because temperature and pressure control what features of the landscape are experienced, glass mechanics and transport are expected to reflect the features of the topology we discuss here.Item Open Access Glass transition and random close packing above three dimensions.(Phys Rev Lett, 2011-10-28) Charbonneau, Patrick; Ikeda, Atsushi; Parisi, Giorgio; Zamponi, FrancescoMotivated by a recently identified severe discrepancy between a static and a dynamic theory of glasses, we numerically investigate the behavior of dense hard spheres in spatial dimensions 3 to 12. Our results are consistent with the static replica theory, but disagree with the dynamic mode-coupling theory, indicating that key ingredients of high-dimensional physics are missing from the latter. We also obtain numerical estimates of the random close packing density, which provides new insights into the mathematical problem of packing spheres in large dimensions.Item Open Access Growing timescales and lengthscales characterizing vibrations of amorphous solids.(Proc Natl Acad Sci U S A, 2016-07-26) Berthier, Ludovic; Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Seoane, Beatriz; Zamponi, FrancescoLow-temperature properties of crystalline solids can be understood using harmonic perturbations around a perfect lattice, as in Debye's theory. Low-temperature properties of amorphous solids, however, strongly depart from such descriptions, displaying enhanced transport, activated slow dynamics across energy barriers, excess vibrational modes with respect to Debye's theory (i.e., a boson peak), and complex irreversible responses to small mechanical deformations. These experimental observations indirectly suggest that the dynamics of amorphous solids becomes anomalous at low temperatures. Here, we present direct numerical evidence that vibrations change nature at a well-defined location deep inside the glass phase of a simple glass former. We provide a real-space description of this transition and of the rapidly growing time- and lengthscales that accompany it. Our results provide the seed for a universal understanding of low-temperature glass anomalies within the theoretical framework of the recently discovered Gardner phase transition.Item Open Access Hopping and the Stokes-Einstein relation breakdown in simple glass formers.(Proc Natl Acad Sci U S A, 2014-10-21) Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Zamponi, FrancescoOne of the most actively debated issues in the study of the glass transition is whether a mean-field description is a reasonable starting point for understanding experimental glass formers. Although the mean-field theory of the glass transition--like that of other statistical systems--is exact when the spatial dimension d → ∞, the evolution of systems properties with d may not be smooth. Finite-dimensional effects could dramatically change what happens in physical dimensions,d = 2, 3. For standard phase transitions finite-dimensional effects are typically captured by renormalization group methods, but for glasses the corrections are much more subtle and only partially understood. Here, we investigate hopping between localized cages formed by neighboring particles in a model that allows to cleanly isolate that effect. By bringing together results from replica theory, cavity reconstruction, void percolation, and molecular dynamics, we obtain insights into how hopping induces a breakdown of the Stokes-Einstein relation and modifies the mean-field scenario in experimental systems. Although hopping is found to supersede the dynamical glass transition, it nonetheless leaves a sizable part of the critical regime untouched. By providing a constructive framework for identifying and quantifying the role of hopping, we thus take an important step toward describing dynamic facilitation in the framework of the mean-field theory of glasses.Item Open Access Jamming criticality revealed by removing localized buckling excitations.(Phys Rev Lett, 2015-03-27) Charbonneau, Patrick; Corwin, Eric I; Parisi, Giorgio; Zamponi, FrancescoRecent theoretical advances offer an exact, first-principles theory of jamming criticality in infinite dimension as well as universal scaling relations between critical exponents in all dimensions. For packings of frictionless spheres near the jamming transition, these advances predict that nontrivial power-law exponents characterize the critical distribution of (i) small interparticle gaps and (ii) weak contact forces, both of which are crucial for mechanical stability. The scaling of the interparticle gaps is known to be constant in all spatial dimensions d-including the physically relevant d=2 and 3, but the value of the weak force exponent remains the object of debate and confusion. Here, we resolve this ambiguity by numerical simulations. We construct isostatic jammed packings with extremely high accuracy, and introduce a simple criterion to separate the contribution of particles that give rise to localized buckling excitations, i.e., bucklers, from the others. This analysis reveals the remarkable dimensional robustness of mean-field marginality and its associated criticality.Item Open Access Numerical detection of the Gardner transition in a mean-field glass former.(Phys Rev E Stat Nonlin Soft Matter Phys, 2015-07) Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Rainone, Corrado; Seoane, Beatriz; Zamponi, FrancescoRecent theoretical advances predict the existence, deep into the glass phase, of a novel phase transition, the so-called Gardner transition. This transition is associated with the emergence of a complex free energy landscape composed of many marginally stable sub-basins within a glass metabasin. In this study, we explore several methods to detect numerically the Gardner transition in a simple structural glass former, the infinite-range Mari-Kurchan model. The transition point is robustly located from three independent approaches: (i) the divergence of the characteristic relaxation time, (ii) the divergence of the caging susceptibility, and (iii) the abnormal tail in the probability distribution function of cage order parameters. We show that the numerical results are fully consistent with the theoretical expectation. The methods we propose may also be generalized to more realistic numerical models as well as to experimental systems.Item Open Access Universal microstructure and mechanical stability of jammed packings.(Phys Rev Lett, 2012-11-16) Charbonneau, Patrick; Corwin, Eric I; Parisi, Giorgio; Zamponi, FrancescoThe mechanical properties of jammed packings depend sensitively on their detailed local structure. Here we provide a complete characterization of the pair correlation close to contact and of the force distribution of jammed frictionless spheres. In particular we discover a set of new scaling relations that connect the behavior of particles bearing small forces and those bearing no force but that are almost in contact. By performing systematic investigations for spatial dimensions d=3-10, in a wide density range and using different preparation protocols, we show that these scalings are indeed universal. We therefore establish clear milestones for the emergence of a complete microscopic theory of jamming. This description is also crucial for high-precision force experiments in granular systems.Item Open Access Universal Non-Debye Scaling in the Density of States of Amorphous Solids.(Phys Rev Lett, 2016-07-22) Charbonneau, Patrick; Corwin, Eric I; Parisi, Giorgio; Poncet, Alexis; Zamponi, FrancescoAt the jamming transition, amorphous packings are known to display anomalous vibrational modes with a density of states (DOS) that remains constant at low frequency. The scaling of the DOS at higher packing fractions remains, however, unclear. One might expect to find a simple Debye scaling, but recent results from effective medium theory and the exact solution of mean-field models both predict an anomalous, non-Debye scaling. Being mean-field in nature, however, these solutions are only strictly valid in the limit of infinite spatial dimension, and it is unclear what value they have for finite-dimensional systems. Here, we study packings of soft spheres in dimensions 3 through 7 and find, away from jamming, a universal non-Debye scaling of the DOS that is consistent with the mean-field predictions. We also consider how the soft mode participation ratio evolves as dimension increases.