Browsing by Author "Parks, Robert"
Now showing 1 - 15 of 15
- Results Per Page
- Sort Options
Item Open Access Breadth of SARS-CoV-2 Neutralization and Protection Induced by a Nanoparticle VaccineLi, Dapeng; Martinez, David R; Martinez, David R; Schäfer, Alexandra; Chen, Haiyan; Barr, Maggie; Sutherland, Laura L; Lee, Esther; Parks, Robert; Mielke, Dieter; Edwards, Whitney; Newman, Amanda; Bock, Kevin W; Minai, Mahnaz; Nagata, Bianca M; Gagne, Matthew; Douek, Daniel C; DeMarco, C Todd; Denny, Thomas N; Oguin, Thomas H; Brown, Alecia; Rountree, Wes; Wang, Yunfei; Mansouri, Katayoun; Edwards, Robert J; Ferrari, Guido; Sempowski, Gregory D; Eaton, Amanda; Tang, Juanjie; Cain, Derek W; Santra, Sampa; Pardi, Norbert; Weissman, Drew; Tomai, Mark A; Fox, Christopher B; Moore, Ian N; Andersen, Hanne; Lewis, Mark G; Golding, Hana; Seder, Robert; Khurana, Surender; Baric, Ralph S; Montefiori, David C; Saunders, Kevin O; Haynes, Barton FItem Open Access Breadth of SARS-CoV-2 Neutralization and Protection Induced by a Nanoparticle Vaccine.(bioRxiv, 2022-02-14) Li, Dapeng; Martinez, David R; Schäfer, Alexandra; Chen, Haiyan; Barr, Maggie; Sutherland, Laura L; Lee, Esther; Parks, Robert; Mielke, Dieter; Edwards, Whitney; Newman, Amanda; Bock, Kevin W; Minai, Mahnaz; Nagata, Bianca M; Gagne, Matthew; Douek, Daniel C; DeMarco, C Todd; Denny, Thomas N; Oguin, Thomas H; Brown, Alecia; Rountree, Wes; Wang, Yunfei; Mansouri, Katayoun; Edwards, Robert J; Ferrari, Guido; Sempowski, Gregory D; Eaton, Amanda; Tang, Juanjie; Cain, Derek W; Santra, Sampa; Pardi, Norbert; Weissman, Drew; Tomai, Mark A; Fox, Christopher B; Moore, Ian N; Andersen, Hanne; Lewis, Mark G; Golding, Hana; Seder, Robert; Khurana, Surender; Baric, Ralph S; Montefiori, David C; Saunders, Kevin O; Haynes, Barton FCoronavirus vaccines that are highly effective against SARS-CoV-2 variants are needed to control the current pandemic. We previously reported a receptor-binding domain (RBD) sortase A-conjugated ferritin nanoparticle (RBD-scNP) vaccine that induced neutralizing antibodies against SARS-CoV-2 and pre-emergent sarbecoviruses and protected monkeys from SARS-CoV-2 WA-1 infection. Here, we demonstrate SARS-CoV-2 RBD-scNP immunization induces potent neutralizing antibodies in non-human primates (NHPs) against all eight SARS-CoV-2 variants tested including the Beta, Delta, and Omicron variants. The Omicron variant was neutralized by RBD-scNP-induced serum antibodies with a mean of 10.6-fold reduction of ID50 titers compared to SARS-CoV-2 D614G. Immunization with RBD-scNPs protected NHPs from SARS-CoV-2 WA-1, Beta, and Delta variant challenge, and protected mice from challenges of SARS-CoV-2 Beta variant and two other heterologous sarbecoviruses. These results demonstrate the ability of RBD-scNPs to induce broad neutralization of SARS-CoV-2 variants and to protect NHPs and mice from multiple different SARS-related viruses. Such a vaccine could provide the needed immunity to slow the spread of and reduce disease caused by SARS-CoV-2 variants such as Delta and Omicron.Item Open Access Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus.(Nature, 2013-04-25) Liao, Hua-Xin; Lynch, Rebecca; Zhou, Tongqing; Gao, Feng; Alam, S Munir; Boyd, Scott D; Fire, Andrew Z; Roskin, Krishna M; Schramm, Chaim A; Zhang, Zhenhai; Zhu, Jiang; Shapiro, Lawrence; NISC Comparative Sequencing Program; Mullikin, James C; Gnanakaran, S; Hraber, Peter; Wiehe, Kevin; Kelsoe, Garnett; Yang, Guang; Xia, Shi-Mao; Montefiori, David C; Parks, Robert; Lloyd, Krissey E; Scearce, Richard M; Soderberg, Kelly A; Cohen, Myron; Kamanga, Gift; Louder, Mark K; Tran, Lillian M; Chen, Yue; Cai, Fangping; Chen, Sheri; Moquin, Stephanie; Du, Xiulian; Joyce, M Gordon; Srivatsan, Sanjay; Zhang, Baoshan; Zheng, Anqi; Shaw, George M; Hahn, Beatrice H; Kepler, Thomas B; Korber, Bette TM; Kwong, Peter D; Mascola, John R; Haynes, Barton FCurrent human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from the time of infection. The mature antibody, CH103, neutralized approximately 55% of HIV-1 isolates, and its co-crystal structure with the HIV-1 envelope protein gp120 revealed a new loop-based mechanism of CD4-binding-site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the unmutated common ancestor of the CH103 lineage avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data determine the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies, and provide insights into strategies to elicit similar antibodies by vaccination.Item Open Access COVID-19 Diagnosis and SARS-CoV-2 Strain Identification by a Rapid, Multiplexed, Point-of-Care Antibody Microarray.(Analytical chemistry, 2023-03) Heggestad, Jacob T; Britton, Rhett J; Kinnamon, David S; Liu, Jason; Anderson, Jack G; Joh, Daniel Y; Quinn, Zachary; Fontes, Cassio M; Hucknall, Angus M; Parks, Robert; Sempowski, Gregory D; Denny, Thomas N; Burke, Thomas W; Haynes, Barton F; Woods, Christopher W; Chilkoti, AshutoshAntigen tests to detect SARS-CoV-2 have emerged as a promising rapid diagnostic method for COVID-19, but they are unable to differentiate between variants of concern (VOCs). Here, we report a rapid point-of-care test (POC-T), termed CoVariant-SPOT, that uses a set of antibodies that are either tolerant or intolerant to spike protein mutations to identify the likely SARS-CoV-2 strain concurrent with COVID-19 diagnosis using antibodies targeting the nucleocapsid protein. All reagents are incorporated into a portable, multiplexed, and sensitive diagnostic platform built upon a nonfouling polymer brush. To validate CoVariant-SPOT, we tested recombinant SARS-CoV-2 proteins, inactivated viruses, and nasopharyngeal swab samples from COVID-19 positive and negative individuals and showed that CoVariant-SPOT can readily distinguish between two VOCs: Delta and Omicron. We believe that CoVariant-SPOT can serve as a valuable adjunct to next-generation sequencing to rapidly identify variants using a scalable and deployable POC-T, thereby enhancing community surveillance efforts worldwide and informing treatment selection.Item Open Access H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination.(PloS one, 2011-01) Moody, M Anthony; Zhang, Ruijun; Walter, Emmanuel B; Woods, Christopher W; Ginsburg, Geoffrey S; McClain, Micah T; Denny, Thomas N; Chen, Xi; Munshaw, Supriya; Marshall, Dawn J; Whitesides, John F; Drinker, Mark S; Amos, Joshua D; Gurley, Thaddeus C; Eudailey, Joshua A; Foulger, Andrew; DeRosa, Katherine R; Parks, Robert; Meyerhoff, R Ryan; Yu, Jae-Sung; Kozink, Daniel M; Barefoot, Brice E; Ramsburg, Elizabeth A; Khurana, Surender; Golding, Hana; Vandergrift, Nathan A; Alam, S Munir; Tomaras, Georgia D; Kepler, Thomas B; Kelsoe, Garnett; Liao, Hua-Xin; Haynes, Barton FDuring the recent H1N1 influenza pandemic, excess morbidity and mortality was seen in young but not older adults suggesting that prior infection with influenza strains may have protected older subjects. In contrast, a history of recent seasonal trivalent vaccine in younger adults was not associated with protection.To study hemagglutinin (HA) antibody responses in influenza immunization and infection, we have studied the day 7 plasma cell repertoires of subjects immunized with seasonal trivalent inactivated influenza vaccine (TIV) and compared them to the plasma cell repertoires of subjects experimentally infected (EI) with influenza H3N2 A/Wisconsin/67/2005. The majority of circulating plasma cells after TIV produced influenza-specific antibodies, while most plasma cells after EI produced antibodies that did not react with influenza HA. While anti-HA antibodies from TIV subjects were primarily reactive with single or few HA strains, anti-HA antibodies from EI subjects were isolated that reacted with multiple HA strains. Plasma cell-derived anti-HA antibodies from TIV subjects showed more evidence of clonal expansion compared with antibodies from EI subjects. From an H3N2-infected subject, we isolated a 4-member clonal lineage of broadly cross-reactive antibodies that bound to multiple HA subtypes and neutralized both H1N1 and H3N2 viruses. This broad reactivity was not detected in post-infection plasma suggesting this broadly reactive clonal lineage was not immunodominant in this subject.The presence of broadly reactive subdominant antibody responses in some EI subjects suggests that improved vaccine designs that make broadly reactive antibody responses immunodominant could protect against novel influenza strains.Item Open Access IDLV-HIV-1 Env vaccination in non-human primates induces affinity maturation of antigen-specific memory B cells.(Communications biology, 2018-01) Blasi, Maria; Negri, Donatella; LaBranche, Celia; Alam, S Munir; Baker, Erich J; Brunner, Elizabeth C; Gladden, Morgan A; Michelini, Zuleika; Vandergrift, Nathan A; Wiehe, Kevin J; Parks, Robert; Shen, Xiaoying; Bonsignori, Mattia; Tomaras, Georgia D; Ferrari, Guido; Montefiori, David C; Santra, Sampa; Haynes, Barton F; Moody, Michael A; Cara, Andrea; Klotman, Mary EHIV continues to be a major global health issue. In spite of successful prevention interventions and treatment methods, the development of an HIV vaccine remains a major priority for the field and would be the optimal strategy to prevent new infections. We showed previously that a single immunization with a SIV-based integrase-defective lentiviral vector (IDLV) expressing the 1086.C HIV-1-envelope induced durable, high-magnitude immune responses in non-human primates (NHPs). In this study, we have further characterized the humoral responses by assessing antibody affinity maturation and antigen-specific memory B-cell persistence in two vaccinated macaques. These animals were also boosted with IDLV expressing the heterologous 1176.C HIV-1-Env to determine if neutralization breadth could be increased, followed by evaluation of the injection sites to assess IDLV persistence. IDLV-Env immunization was associated with persistence of the vector DNA for up to 6 months post immunization and affinity maturation of antigen-specific memory B cells.Item Open Access Immune checkpoint modulation enhances HIV-1 antibody induction.(Nature communications, 2020-02-19) Bradley, Todd; Kuraoka, Masayuki; Yeh, Chen-Hao; Tian, Ming; Chen, Huan; Cain, Derek W; Chen, Xuejun; Cheng, Cheng; Ellebedy, Ali H; Parks, Robert; Barr, Maggie; Sutherland, Laura L; Scearce, Richard M; Bowman, Cindy M; Bouton-Verville, Hilary; Santra, Sampa; Wiehe, Kevin; Lewis, Mark G; Ogbe, Ane; Borrow, Persephone; Montefiori, David; Bonsignori, Mattia; Anthony Moody, M; Verkoczy, Laurent; Saunders, Kevin O; Ahmed, Rafi; Mascola, John R; Kelsoe, Garnett; Alt, Frederick W; Haynes, Barton FEliciting protective titers of HIV-1 broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development, but current vaccine strategies have yet to induce bnAbs in humans. Many bnAbs isolated from HIV-1-infected individuals are encoded by immunoglobulin gene rearrangments with infrequent naive B cell precursors and with unusual genetic features that may be subject to host regulatory control. Here, we administer antibodies targeting immune cell regulatory receptors CTLA-4, PD-1 or OX40 along with HIV envelope (Env) vaccines to rhesus macaques and bnAb immunoglobulin knock-in (KI) mice expressing diverse precursors of CD4 binding site HIV-1 bnAbs. CTLA-4 blockade augments HIV-1 Env antibody responses in macaques, and in a bnAb-precursor mouse model, CTLA-4 blocking or OX40 agonist antibodies increase germinal center B and T follicular helper cells and plasma neutralizing antibodies. Thus, modulation of CTLA-4 or OX40 immune checkpoints during vaccination can promote germinal center activity and enhance HIV-1 Env antibody responses.Item Open Access Immunization with an SIV-based IDLV Expressing HIV-1 Env 1086 Clade C Elicits Durable Humoral and Cellular Responses in Rhesus Macaques(MOLECULAR THERAPY, 2016-11) Negri, Donatella; Blasi, Maria; LaBranche, Celia; Parks, Robert; Balachandran, Harikrishnan; Lifton, Michelle; Shen, Xiaoying; Denny, Thomas; Ferrari, Guido; Vescio, Maria Fenicia; Andersen, Hanne; Montefiori, David C; Tomaras, Georgia D; Liao, Hua-Xin; Santra, Sampa; Haynes, Barton F; Klotman, Mary E; Cara, AndreaItem Open Access In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies(Cell, 2021) Li, Dapeng; Edwards, Robert J; Manne, Kartik; Martinez, David R; Schäfer, Alexandra; Alam, S Munir; Wiehe, Kevin; Lu, Xiaozhi; Parks, Robert; Sutherland, Laura L; othersSARS-CoV-2-neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) or the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Three of 46 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can rarely occur in SARS-CoV-2 antibody-infused macaques.Item Open Access Initiation of HIV neutralizing B cell lineages with sequential envelope immunizations.(Nature communications, 2017-11-23) Williams, Wilton B; Zhang, Jinsong; Jiang, Chuancang; Nicely, Nathan I; Fera, Daniela; Luo, Kan; Moody, M Anthony; Liao, Hua-Xin; Alam, S Munir; Kepler, Thomas B; Ramesh, Akshaya; Wiehe, Kevin; Holland, James A; Bradley, Todd; Vandergrift, Nathan; Saunders, Kevin O; Parks, Robert; Foulger, Andrew; Xia, Shi-Mao; Bonsignori, Mattia; Montefiori, David C; Louder, Mark; Eaton, Amanda; Santra, Sampa; Scearce, Richard; Sutherland, Laura; Newman, Amanda; Bouton-Verville, Hilary; Bowman, Cindy; Bomze, Howard; Gao, Feng; Marshall, Dawn J; Whitesides, John F; Nie, Xiaoyan; Kelsoe, Garnett; Reed, Steven G; Fox, Christopher B; Clary, Kim; Koutsoukos, Marguerite; Franco, David; Mascola, John R; Harrison, Stephen C; Haynes, Barton F; Verkoczy, LaurentA strategy for HIV-1 vaccine development is to define envelope (Env) evolution of broadly neutralizing antibodies (bnAbs) in infection and to recreate those events by vaccination. Here, we report host tolerance mechanisms that limit the development of CD4-binding site (CD4bs), HCDR3-binder bnAbs via sequential HIV-1 Env vaccination. Vaccine-induced macaque CD4bs antibodies neutralize 7% of HIV-1 strains, recognize open Env trimers, and accumulate relatively modest somatic mutations. In naive CD4bs, unmutated common ancestor knock-in mice Env+B cell clones develop anergy and partial deletion at the transitional to mature B cell stage, but become Env- upon receptor editing. In comparison with repetitive Env immunizations, sequential Env administration rescue anergic Env+ (non-edited) precursor B cells. Thus, stepwise immunization initiates CD4bs-bnAb responses, but immune tolerance mechanisms restrict their development, suggesting that sequential immunogen-based vaccine regimens will likely need to incorporate strategies to expand bnAb precursor pools.Item Open Access Maternal HIV-1 envelope-specific antibody responses and reduced risk of perinatal transmission.(J Clin Invest, 2015-07-01) Permar, Sallie R; Fong, Youyi; Vandergrift, Nathan; Fouda, Genevieve G; Gilbert, Peter; Parks, Robert; Jaeger, Frederick H; Pollara, Justin; Martelli, Amanda; Liebl, Brooke E; Lloyd, Krissey; Yates, Nicole L; Overman, R Glenn; Shen, Xiaoying; Whitaker, Kaylan; Chen, Haiyan; Pritchett, Jamie; Solomon, Erika; Friberg, Emma; Marshall, Dawn J; Whitesides, John F; Gurley, Thaddeus C; Von Holle, Tarra; Martinez, David R; Cai, Fangping; Kumar, Amit; Xia, Shi-Mao; Lu, Xiaozhi; Louzao, Raul; Wilkes, Samantha; Datta, Saheli; Sarzotti-Kelsoe, Marcella; Liao, Hua-Xin; Ferrari, Guido; Alam, S Munir; Montefiori, David C; Denny, Thomas N; Moody, M Anthony; Tomaras, Georgia D; Gao, Feng; Haynes, Barton FDespite the wide availability of antiretroviral drugs, more than 250,000 infants are vertically infected with HIV-1 annually, emphasizing the need for additional interventions to eliminate pediatric HIV-1 infections. Here, we aimed to define humoral immune correlates of risk of mother-to-child transmission (MTCT) of HIV-1, including responses associated with protection in the RV144 vaccine trial. Eighty-three untreated, HIV-1-transmitting mothers and 165 propensity score-matched nontransmitting mothers were selected from the Women and Infants Transmission Study (WITS) of US nonbreastfeeding, HIV-1-infected mothers. In a multivariable logistic regression model, the magnitude of the maternal IgG responses specific for the third variable loop (V3) of the HIV-1 envelope was predictive of a reduced risk of MTCT. Neutralizing Ab responses against easy-to-neutralize (tier 1) HIV-1 strains also predicted a reduced risk of peripartum transmission in secondary analyses. Moreover, recombinant maternal V3-specific IgG mAbs mediated neutralization of autologous HIV-1 isolates. Thus, common V3-specific Ab responses in maternal plasma predicted a reduced risk of MTCT and mediated autologous virus neutralization, suggesting that boosting these maternal Ab responses may further reduce HIV-1 MTCT.Item Open Access Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses.(Nature, 2021-06) Saunders, Kevin O; Lee, Esther; Parks, Robert; Martinez, David R; Li, Dapeng; Chen, Haiyan; Edwards, Robert J; Gobeil, Sophie; Barr, Maggie; Mansouri, Katayoun; Alam, S Munir; Sutherland, Laura L; Cai, Fangping; Sanzone, Aja M; Berry, Madison; Manne, Kartik; Bock, Kevin W; Minai, Mahnaz; Nagata, Bianca M; Kapingidza, Anyway B; Azoitei, Mihai; Tse, Longping V; Scobey, Trevor D; Spreng, Rachel L; Rountree, R Wes; DeMarco, C Todd; Denny, Thomas N; Woods, Christopher W; Petzold, Elizabeth W; Tang, Juanjie; Oguin, Thomas H; Sempowski, Gregory D; Gagne, Matthew; Douek, Daniel C; Tomai, Mark A; Fox, Christopher B; Seder, Robert; Wiehe, Kevin; Weissman, Drew; Pardi, Norbert; Golding, Hana; Khurana, Surender; Acharya, Priyamvada; Andersen, Hanne; Lewis, Mark G; Moore, Ian N; Montefiori, David C; Baric, Ralph S; Haynes, Barton FBetacoronaviruses caused the outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome, as well as the current pandemic of SARS coronavirus 2 (SARS-CoV-2)1-4. Vaccines that elicit protective immunity against SARS-CoV-2 and betacoronaviruses that circulate in animals have the potential to prevent future pandemics. Here we show that the immunization of macaques with nanoparticles conjugated with the receptor-binding domain of SARS-CoV-2, and adjuvanted with 3M-052 and alum, elicits cross-neutralizing antibody responses against bat coronaviruses, SARS-CoV and SARS-CoV-2 (including the B.1.1.7, P.1 and B.1.351 variants). Vaccination of macaques with these nanoparticles resulted in a 50% inhibitory reciprocal serum dilution (ID50) neutralization titre of 47,216 (geometric mean) for SARS-CoV-2, as well as in protection against SARS-CoV-2 in the upper and lower respiratory tracts. Nucleoside-modified mRNAs that encode a stabilized transmembrane spike or monomeric receptor-binding domain also induced cross-neutralizing antibody responses against SARS-CoV and bat coronaviruses, albeit at lower titres than achieved with the nanoparticles. These results demonstrate that current mRNA-based vaccines may provide some protection from future outbreaks of zoonotic betacoronaviruses, and provide a multimeric protein platform for the further development of vaccines against multiple (or all) betacoronaviruses.Item Open Access SARS-CoV-2 vaccination induces neutralizing antibodies against pandemic and pre-emergent SARS-related coronaviruses in monkeys.(bioRxiv, 2021-02-17) Saunders, Kevin O; Lee, Esther; Parks, Robert; Martinez, David R; Li, Dapeng; Chen, Haiyan; Edwards, Robert J; Gobeil, Sophie; Barr, Maggie; Mansouri, Katayoun; Alam, S Munir; Sutherland, Laura L; Cai, Fangping; Sanzone, Aja M; Berry, Madison; Manne, Kartik; Kapingidza, Anyway B; Azoitei, Mihai; Tse, Longping V; Scobey, Trevor D; Spreng, Rachel L; Rountree, R Wes; DeMarco, C Todd; Denny, Thomas N; Woods, Christopher W; Petzold, Elizabeth W; Oguin, Thomas H; Sempowski, Gregory D; Gagne, Matthew; Douek, Daniel C; Tomai, Mark A; Fox, Christopher B; Seder, Robert; Wiehe, Kevin; Weissman, Drew; Pardi, Norbert; Acharya, Priyamvada; Andersen, Hanne; Lewis, Mark G; Moore, Ian N; Montefiori, David C; Baric, Ralph S; Haynes, Barton FBetacoronaviruses (betaCoVs) caused the severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) outbreaks, and now the SARS-CoV-2 pandemic. Vaccines that elicit protective immune responses against SARS-CoV-2 and betaCoVs circulating in animals have the potential to prevent future betaCoV pandemics. Here, we show that immunization of macaques with a multimeric SARS-CoV-2 receptor binding domain (RBD) nanoparticle adjuvanted with 3M-052-Alum elicited cross-neutralizing antibody responses against SARS-CoV-1, SARS-CoV-2, batCoVs and the UK B.1.1.7 SARS-CoV-2 mutant virus. Nanoparticle vaccination resulted in a SARS-CoV-2 reciprocal geometric mean neutralization titer of 47,216, and robust protection against SARS-CoV-2 in macaque upper and lower respiratory tracts. Importantly, nucleoside-modified mRNA encoding a stabilized transmembrane spike or monomeric RBD protein also induced SARS-CoV-1 and batCoV cross-neutralizing antibodies, albeit at lower titers. These results demonstrate current mRNA vaccines may provide some protection from future zoonotic betaCoV outbreaks, and provide a platform for further development of pan-betaCoV nanoparticle vaccines.Item Open Access Stabilized HIV-1 envelope immunization induces neutralizing antibodies to the CD4bs and protects macaques against mucosal infection.(Science translational medicine, 2022-09) Saunders, Kevin O; Edwards, Robert J; Tilahun, Kedamawit; Manne, Kartik; Lu, Xiaozhi; Cain, Derek W; Wiehe, Kevin; Williams, Wilton B; Mansouri, Katayoun; Hernandez, Giovanna E; Sutherland, Laura; Scearce, Richard; Parks, Robert; Barr, Maggie; DeMarco, Todd; Eater, Chloe M; Eaton, Amanda; Morton, Georgeanna; Mildenberg, Benjamin; Wang, Yunfei; Rountree, R Wes; Tomai, Mark A; Fox, Christopher B; Moody, M Anthony; Alam, S Munir; Santra, Sampa; Lewis, Mark G; Denny, Thomas N; Shaw, George M; Montefiori, David C; Acharya, Priyamvada; Haynes, Barton FA successful HIV-1 vaccine will require induction of a polyclonal neutralizing antibody (nAb) response, yet vaccine-mediated induction of such a response in primates remains a challenge. We found that a stabilized HIV-1 CH505 envelope (Env) trimer formulated with a Toll-like receptor 7/8 agonist induced potent HIV-1 polyclonal nAbs that correlated with protection from homologous simian-human immunodeficiency virus (SHIV) infection. The serum dilution that neutralized 50% of virus replication (ID50 titer) required to protect 90% of macaques was 1:364 against the challenge virus grown in primary rhesus CD4+ T cells. Structural analyses of vaccine-induced nAbs demonstrated targeting of the Env CD4 binding site or the N156 glycan and the third variable loop base. Autologous nAb specificities similar to those elicited in macaques by vaccination were isolated from the human living with HIV from which the CH505 Env immunogen was derived. CH505 viral isolates were isolated that mutated the V1 to escape both the infection-induced and vaccine-induced antibodies. These results define the specificities of a vaccine-induced nAb response and the protective titers of HIV-1 vaccine-induced nAbs required to protect nonhuman primates from low-dose mucosal challenge by SHIVs bearing a primary transmitted/founder Env.Item Open Access The functions of SARS-CoV-2 neutralizing and infection-enhancing antibodies in vitro and in mice and nonhuman primates.(bioRxiv, 2021-02-18) Li, Dapeng; Edwards, Robert J; Manne, Kartik; Martinez, David R; Schäfer, Alexandra; Alam, S Munir; Wiehe, Kevin; Lu, Xiaozhi; Parks, Robert; Sutherland, Laura L; Oguin, Thomas H; McDanal, Charlene; Perez, Lautaro G; Mansouri, Katayoun; Gobeil, Sophie MC; Janowska, Katarzyna; Stalls, Victoria; Kopp, Megan; Cai, Fangping; Lee, Esther; Foulger, Andrew; Hernandez, Giovanna E; Sanzone, Aja; Tilahun, Kedamawit; Jiang, Chuancang; Tse, Longping V; Bock, Kevin W; Minai, Mahnaz; Nagata, Bianca M; Cronin, Kenneth; Gee-Lai, Victoria; Deyton, Margaret; Barr, Maggie; Holle, Tarra Von; Macintyre, Andrew N; Stover, Erica; Feldman, Jared; Hauser, Blake M; Caradonna, Timothy M; Scobey, Trevor D; Rountree, Wes; Wang, Yunfei; Moody, M Anthony; Cain, Derek W; DeMarco, C Todd; Denny, ThomasN; Woods, Christopher W; Petzold, Elizabeth W; Schmidt, Aaron G; Teng, I-Ting; Zhou, Tongqing; Kwong, Peter D; Mascola, John R; Graham, Barney S; Moore, Ian N; Seder, Robert; Andersen, Hanne; Lewis, Mark G; Montefiori, David C; Sempowski, Gregory D; Baric, Ralph S; Acharya, Priyamvada; Haynes, Barton F; Saunders, Kevin OSARS-CoV-2 neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) and the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV-1 infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro , while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Nonetheless, three of 31 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo , increased lung inflammation can occur in SARS-CoV-2 antibody-infused macaques.