Browsing by Author "Parry, Hailey A"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Acute and chronic effects of resistance training on skeletal muscle markers of mitochondrial remodeling in older adults(Physiological Reports, 2020-08) Mesquita, Paulo HC; Lamb, Donald A; Parry, Hailey A; Moore, Johnathon H; Smith, Morgan A; Vann, Christopher G; Osburn, Shelby C; Fox, Carlton D; Ruple, Bradley A; Huggins, Kevin W; Fruge, Andrew D; Young, Kaelin C; Kavazis, Andreas N; Roberts, Michael DItem Open Access Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy(PLOS ONE) Haun, Cody T; Vann, Christopher G; Osburn, Shelby C; Mumford, Petey W; Roberson, Paul A; Romero, Matthew A; Fox, Carlton D; Johnson, Christopher A; Parry, Hailey A; Kavazis, Andreas N; Moon, Jordan R; Badisa, Veera LD; Mwashote, Benjamin M; Ibeanusi, Victor; Young, Kaelin C; Roberts, Michael DItem Open Access Pre-training Skeletal Muscle Fiber Size and Predominant Fiber Type Best Predict Hypertrophic Responses to 6 Weeks of Resistance Training in Previously Trained Young Men(Frontiers in Physiology) Haun, Cody T; Vann, Christopher G; Mobley, C Brooks; Osburn, Shelby C; Mumford, Petey W; Roberson, Paul A; Romero, Matthew A; Fox, Carlton D; Parry, Hailey A; Kavazis, Andreas N; Moon, Jordan R; Young, Kaelin C; Roberts, Michael DItem Open Access Skeletal muscle mitochondrial volume and myozenin-1 protein differences exist between high versus low anabolic responders to resistance training(PeerJ) Roberts, Michael D; Romero, Matthew A; Mobley, Christopher B; Mumford, Petey W; Roberson, Paul A; Haun, Cody T; Vann, Christopher G; Osburn, Shelby C; Holmes, Hudson H; Greer, Rory A; Lockwood, Christopher M; Parry, Hailey A; Kavazis, Andreas NBackgroundWe sought to examine how 12 weeks of resistance exercise training (RET) affected skeletal muscle myofibrillar and sarcoplasmic protein levels along with markers of mitochondrial physiology in high versus low anabolic responders.MethodsUntrained college-aged males were classified as anabolic responders in the top 25th percentile (high-response cluster (HI);n= 13, dual x-ray absorptiometry total body muscle mass change (Δ) = +3.1 ± 0.3 kg, Δ vastus lateralis (VL) thickness = +0.59 ± 0.05 cm, Δ muscle fiber cross sectional area = +1,426 ± 253 μm2) and bottom 25th percentile (low-response cluster (LO);n= 12, +1.1 ± 0.2 kg, +0.24 ± 0.07 cm, +5 ± 209 μm2;p< 0.001 for all Δ scores compared to HI). VL muscle prior to (PRE) and following RET (POST) was assayed for myofibrillar and sarcoplasmic protein concentrations, myosin and actin protein content, and markers of mitochondrial volume. Proteins related to myofibril formation, as well as whole lysate PGC1-α protein levels were assessed.ResultsMain effects of cluster (HI > LO,p= 0.018, Cohen’sd= 0.737) and time (PRE > POST,p= 0.037, Cohen’sd= −0.589) were observed for citrate synthase activity, although no significant interaction existed (LO PRE = 1.35 ± 0.07 mM/min/mg protein, LO POST = 1.12 ± 0.06, HI PRE = 1.53 ± 0.11, HI POST = 1.39 ± 0.10). POST myofibrillar myozenin-1 protein levels were up-regulated in the LO cluster (LO PRE = 0.96 ± 0.13 relative expression units, LO POST = 1.25 ± 0.16, HI PRE = 1.00 ± 0.11, HI POST = 0.85 ± 0.12; within-group LO increasep= 0.025, Cohen’sd= 0.691). No interactions or main effects existed for other assayed markers.DiscussionOur data suggest myofibrillar or sarcoplasmic protein concentrations do not differ between HI versus LO anabolic responders prior to or following a 12-week RET program. Greater mitochondrial volume in HI responders may have facilitated greater anabolism, and myofibril myozenin-1 protein levels may represent a biomarker that differentiates anabolic responses to RET. However, mechanistic research validating these hypotheses is needed.