Browsing by Author "Petzold, Elizabeth A"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Epigenetic and transcriptional responses in circulating leukocytes are associated with future decompensation during SARS-CoV-2 infection.(iScience, 2024-01) McClain, Micah T; Zhbannikov, Ilya; Satterwhite, Lisa L; Henao, Ricardo; Giroux, Nicholas S; Ding, Shengli; Burke, Thomas W; Tsalik, Ephraim L; Nix, Christina; Balcazar, Jorge Prado; Petzold, Elizabeth A; Shen, Xiling; Woods, Christopher WTo elucidate host response elements that define impending decompensation during SARS-CoV-2 infection, we enrolled subjects hospitalized with COVID-19 who were matched for disease severity and comorbidities at the time of admission. We performed combined single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) on peripheral blood mononuclear cells (PBMCs) at admission and compared subjects who improved from their moderate disease with those who later clinically decompensated and required invasive mechanical ventilation or died. Chromatin accessibility and transcriptomic immune profiles were markedly altered between the two groups, with strong signals in CD4+ T cells, inflammatory T cells, dendritic cells, and NK cells. Multiomic signature scores at admission were tightly associated with future clinical deterioration (auROC 1.0). Epigenetic and transcriptional changes in PBMCs reveal early, broad immune dysregulation before typical clinical signs of decompensation are apparent and thus may act as biomarkers to predict future severity in COVID-19.Item Open Access Evaluation of SARS-CoV-2 identification methods through surveillance of companion animals in SARS-CoV-2-positive homes in North Carolina, March to December 2020(PeerJ) Gin, Taylor E; Petzold, Elizabeth A; Uthappa, Diya M; Neighbors, Coralei E; Borough, Anna R; Gin, Craig; Lashnits, Erin; Sempowski, Gregory D; Denny, Thomas; Bienzle, Dorothee; Weese, J Scott; Callahan, Benjamin J; Woods, Christopher WWe collected oral and/or rectal swabs and serum from dogs and cats living in homes with SARS-CoV-2-PCR-positive persons for SARS-CoV-2 PCR and serology testing. Pre-COVID-19 serum samples from dogs and cats were used as negative controls, and samples were tested in duplicate at different timepoints. Raw ELISA results scrutinized relative to known negative samples suggested that cut-offs for IgG seropositivity may require adjustment relative to previously proposed values, while proposed cut-offs for IgM require more extensive validation. A small number of pet dogs (2/43, 4.7%) and one cat (1/21, 4.8%) were positive for SARS-CoV-2 RNA, and 28.6 and 37.5% of cats and dogs were positive for anti-SARS-CoV-2 IgG, respectively.Item Open Access Previously Derived Host Gene Expression Classifiers Identify Bacterial and Viral Etiologies of Acute Febrile Respiratory Illness in a South Asian Population.(Open forum infectious diseases, 2020-06) Tillekeratne, L Gayani; Suchindran, Sunil; Ko, Emily R; Petzold, Elizabeth A; Bodinayake, Champica K; Nagahawatte, Ajith; Devasiri, Vasantha; Kurukulasooriya, Ruvini; Nicholson, Bradly P; McClain, Micah T; Burke, Thomas W; Tsalik, Ephraim L; Henao, Ricardo; Ginsburg, Geoffrey S; Reller, Megan E; Woods, Christopher WBackground:Pathogen-based diagnostics for acute respiratory infection (ARI) have limited ability to detect etiology of illness. We previously showed that peripheral blood-based host gene expression classifiers accurately identify bacterial and viral ARI in cohorts of European and African descent. We determined classifier performance in a South Asian cohort. Methods:Patients ≥15 years with fever and respiratory symptoms were enrolled in Sri Lanka. Comprehensive pathogen-based testing was performed. Peripheral blood ribonucleic acid was sequenced and previously developed signatures were applied: a pan-viral classifier (viral vs nonviral) and an ARI classifier (bacterial vs viral vs noninfectious). Results:Ribonucleic acid sequencing was performed in 79 subjects: 58 viral infections (36 influenza, 22 dengue) and 21 bacterial infections (10 leptospirosis, 11 scrub typhus). The pan-viral classifier had an overall classification accuracy of 95%. The ARI classifier had an overall classification accuracy of 94%, with sensitivity and specificity of 91% and 95%, respectively, for bacterial infection. The sensitivity and specificity of C-reactive protein (>10 mg/L) and procalcitonin (>0.25 ng/mL) for bacterial infection were 100% and 34%, and 100% and 41%, respectively. Conclusions:Previously derived gene expression classifiers had high predictive accuracy at distinguishing viral and bacterial infection in South Asian patients with ARI caused by typical and atypical pathogens.Item Open Access Prospective Validation of a Rapid Host Gene Expression Test to Discriminate Bacterial From Viral Respiratory Infection.(JAMA network open, 2022-04) Ko, Emily R; Henao, Ricardo; Frankey, Katherine; Petzold, Elizabeth A; Isner, Pamela D; Jaehne, Anja K; Allen, Nakia; Gardner-Gray, Jayna; Hurst, Gina; Pflaum-Carlson, Jacqueline; Jayaprakash, Namita; Rivers, Emanuel P; Wang, Henry; Ugalde, Irma; Amanullah, Siraj; Mercurio, Laura; Chun, Thomas H; May, Larissa; Hickey, Robert W; Lazarus, Jacob E; Gunaratne, Shauna H; Pallin, Daniel J; Jambaulikar, Guruprasad; Huckins, David S; Ampofo, Krow; Jhaveri, Ravi; Jiang, Yunyun; Komarow, Lauren; Evans, Scott R; Ginsburg, Geoffrey S; Tillekeratne, L Gayani; McClain, Micah T; Burke, Thomas W; Woods, Christopher W; Tsalik, Ephraim L; Antibacterial Resistance Leadership GroupImportance
Bacterial and viral causes of acute respiratory illness (ARI) are difficult to clinically distinguish, resulting in the inappropriate use of antibacterial therapy. The use of a host gene expression-based test that is able to discriminate bacterial from viral infection in less than 1 hour may improve care and antimicrobial stewardship.Objective
To validate the host response bacterial/viral (HR-B/V) test and assess its ability to accurately differentiate bacterial from viral infection among patients with ARI.Design, setting, and participants
This prospective multicenter diagnostic study enrolled 755 children and adults with febrile ARI of 7 or fewer days' duration from 10 US emergency departments. Participants were enrolled from October 3, 2014, to September 1, 2019, followed by additional enrollment of patients with COVID-19 from March 20 to December 3, 2020. Clinical adjudication of enrolled participants identified 616 individuals as having bacterial or viral infection. The primary analysis cohort included 334 participants with high-confidence reference adjudications (based on adjudicator concordance and the presence of an identified pathogen confirmed by microbiological testing). A secondary analysis of the entire cohort of 616 participants included cases with low-confidence reference adjudications (based on adjudicator discordance or the absence of an identified pathogen in microbiological testing). Thirty-three participants with COVID-19 were included post hoc.Interventions
The HR-B/V test quantified the expression of 45 host messenger RNAs in approximately 45 minutes to derive a probability of bacterial infection.Main outcomes and measures
Performance characteristics for the HR-B/V test compared with clinical adjudication were reported as either bacterial or viral infection or categorized into 4 likelihood groups (viral very likely [probability score <0.19], viral likely [probability score of 0.19-0.40], bacterial likely [probability score of 0.41-0.73], and bacterial very likely [probability score >0.73]) and compared with procalcitonin measurement.Results
Among 755 enrolled participants, the median age was 26 years (IQR, 16-52 years); 360 participants (47.7%) were female, and 395 (52.3%) were male. A total of 13 participants (1.7%) were American Indian, 13 (1.7%) were Asian, 368 (48.7%) were Black, 131 (17.4%) were Hispanic, 3 (0.4%) were Native Hawaiian or Pacific Islander, 297 (39.3%) were White, and 60 (7.9%) were of unspecified race and/or ethnicity. In the primary analysis involving 334 participants, the HR-B/V test had sensitivity of 89.8% (95% CI, 77.8%-96.2%), specificity of 82.1% (95% CI, 77.4%-86.6%), and a negative predictive value (NPV) of 97.9% (95% CI, 95.3%-99.1%) for bacterial infection. In comparison, the sensitivity of procalcitonin measurement was 28.6% (95% CI, 16.2%-40.9%; P < .001), the specificity was 87.0% (95% CI, 82.7%-90.7%; P = .006), and the NPV was 87.6% (95% CI, 85.5%-89.5%; P < .001). When stratified into likelihood groups, the HR-B/V test had an NPV of 98.9% (95% CI, 96.1%-100%) for bacterial infection in the viral very likely group and a positive predictive value of 63.4% (95% CI, 47.2%-77.9%) for bacterial infection in the bacterial very likely group. The HR-B/V test correctly identified 30 of 33 participants (90.9%) with acute COVID-19 as having a viral infection.Conclusions and relevance
In this study, the HR-B/V test accurately discriminated bacterial from viral infection among patients with febrile ARI and was superior to procalcitonin measurement. The findings suggest that an accurate point-of-need host response test with high NPV may offer an opportunity to improve antibiotic stewardship and patient outcomes.