Browsing by Author "Pfenning, Andreas R"
- Results Per Page
- Sort Options
Item Open Access A Computational Synthesis of Genes, Behavior, and Evolution Provides Insights into the Molecular Basis of Vocal Learning(2012) Pfenning, Andreas RVocal learning is the ability modify vocal output based on auditory input and is the basis of human speech acquisition. It is shared by few distantly related bird and mammal orders, and is thus very likely to be an example of convergent evolution, having evolved independently in multiple lineages. This complex behavior is presumed to require networks of regulated genes to develop the necessary neural circuits for learning and maintaining vocalizations. Deciphering these networks has been limited by the lack of high throughput genomic tools in vocal learning avian species and the lack of a solid computational framework to understand the relationship between gene expression and behavior. This dissertation provides new insights into the evolution and mechanisms of vocal learning by taking a top-down, systems biology approach to understanding gene expression regulation across avian and mammalian species. First, I worked with colleagues to develop a zebra finch Agilent oligonucleotide microarray, including developing programs for more accurate annotation of oligonucleotides and genes. I then used these arrays and tools in multiple collaborative, but related projects, to measure transcriptome expression data in vocal learning and non-learning avian species, under a number of behavioral paradigms, with a focus on song production. To make sense of the avian microarray data, I compiled microarray data from other sources, including expression analyses across over 900 human brain regions generated by Allen Brain Institute. To compare these data sets, I developed and performed a variety of computational analyses including clustering, linear models, gene set enrichment analysis, motif discovery, and phylogenetic inference, providing a novel framework to study the gene regulatory networks associated with a complex behavior. Using the developed framework, we are able to better understand vocal learning at different levels: how the brain regions for vocal learning evolved and how those brain regions function during the production of learned vocalizations. At the evolutionary level, we identified genes with unique expression patterns in the brains of vocal learning birds and humans. Interesting candidates include genes related to formation of neural connections, in particular the SLIT/ROBO axon guidance pathway. This algorithm also allowed us to identify the analogous regions that are a part of vocal learning circuit across species, providing the first quantitative evidence relating the human vocal learning circuit to the avian vocal learning circuit. With the avian song system verified as a model for human speech at the molecular level, we conducted an experiment to better understand what is happening in those brain regions during singing by profiling gene expression in a time course as birds are producing song. Surprisingly, an overwhelming majority of the gene expression identified was strongly enriched in a particular region. We also found a tight coupling between the behavioral function of a particular region and the gene expression pattern. To gain insight into the mechanisms of this gene regulation, we conducted a genomic scan of transcription factor binding sites in zebra finch. Many transcription factor binding sites were enriched in the promoters of genes with a particular temporal patterns, several of which had already been hypothesized to play a role in the neural system. Using this data set of gene expression profiles and transcription factor binding sites along with separate experiments conducted in mouse, we were able uncover evidence that the transcription factor CARF plays a role in neuron homeostasis. These results have broadened our understanding of the molecular basis of vocal learning at multiple levels. Overall, this dissertation outlines a novel way of approaching the study of the relationship between genes and behavior.
Item Open Access Convergent transcriptional specializations in the brains of humans and song-learning birds.(Science, 2014-12-12) Pfenning, Andreas R; Hara, Erina; Whitney, Osceola; Rivas, Miriam V; Wang, Rui; Roulhac, Petra L; Howard, Jason T; Wirthlin, Morgan; Lovell, Peter V; Ganapathy, Ganeshkumar; Mouncastle, Jacquelyn; Moseley, M Arthur; Thompson, J Will; Soderblom, Erik J; Iriki, Atsushi; Kato, Masaki; Gilbert, M Thomas P; Zhang, Guojie; Bakken, Trygve; Bongaarts, Angie; Bernard, Amy; Lein, Ed; Mello, Claudio V; Hartemink, Alexander J; Jarvis, Erich DSong-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes.Item Open Access Core and region-enriched networks of behaviorally regulated genes and the singing genome.(Science, 2014-12-12) Whitney, Osceola; Pfenning, Andreas R; Howard, Jason T; Blatti, Charles A; Liu, Fang; Ward, James M; Wang, Rui; Audet, Jean-Nicoles; Kellis, Manolis; Mukherjee, Sayan; Sinha, Saurabh; Hartemink, Alexander J; West, Anne E; Jarvis, Erich DSongbirds represent an important model organism for elucidating molecular mechanisms that link genes with complex behaviors, in part because they have discrete vocal learning circuits that have parallels with those that mediate human speech. We found that ~10% of the genes in the avian genome were regulated by singing, and we found a striking regional diversity of both basal and singing-induced programs in the four key song nuclei of the zebra finch, a vocal learning songbird. The region-enriched patterns were a result of distinct combinations of region-enriched transcription factors (TFs), their binding motifs, and presinging acetylation of histone 3 at lysine 27 (H3K27ac) enhancer activity in the regulatory regions of the associated genes. RNA interference manipulations validated the role of the calcium-response transcription factor (CaRF) in regulating genes preferentially expressed in specific song nuclei in response to singing. Thus, differential combinatorial binding of a small group of activity-regulated TFs and predefined epigenetic enhancer activity influences the anatomical diversity of behaviorally regulated gene networks.Item Open Access Genome-wide identification of calcium-response factor (CaRF) binding sites predicts a role in regulation of neuronal signaling pathways(PLoS ONE, 2010) Pfenning, Andreas R; Kim, Tae-Kyung; Spotts, James M; Hemberg, Martin; Su, Dan; West, Anne ECalcium-Response Factor (CaRF) was first identified as a transcription factor based on its affinity for a neuronal-selective calcium-response element (CaRE1) in the gene encoding Brain-Derived Neurotrophic Factor (BDNF). However, because CaRF shares no homology with other transcription factors, its properties and gene targets have remained unknown. Here we show that the DNA binding domain of CaRF has been highly conserved across evolution and that CaRF binds DNA directly in a sequence-specific manner in the absence of other eukaryotic cofactors. Using a binding site selection screen we identify a high-affinity consensus CaRF response element (cCaRE) that shares significant homology with the CaRE1 element of Bdnf. In a genome-wide chromatin immunoprecipitation analysis (ChIP-Seq), we identified 176 sites of CaRF-specific binding (peaks) in neuronal genomic DNA. 128 of these peaks are within 10kB of an annotated gene, and 60 are within 1kB of an annotated transcriptional start site. At least 138 of the CaRF peaks contain a common 10-bp motif with strong statistical similarity to the cCaRE, and we provide evidence predicting that CaRF can bind independently to at least 64.5% of these motifs in vitro. Analysis of this set of putative CaRF targets suggests the enrichment of genes that regulate intracellular signaling cascades. Finally we demonstrate that expression of a subset of these target genes is altered in the cortex of Carf knockout (KO) mice. Together these data strongly support the characterization of CaRF as a unique transcription factor and provide the first insight into the program of CaRF-regulated transcription in neurons. © 2010 Pfenning et al.Item Open Access Molecular profiling of the developing avian telencephalon: regional timing and brain subdivision continuities.(J Comp Neurol, 2013-11) Chen, Chun-Chun; Winkler, Candace M; Pfenning, Andreas R; Jarvis, Erich DIn our companion study (Jarvis et al. [2013] J Comp Neurol. doi: 10.1002/cne.23404) we used quantitative brain molecular profiling to discover that distinct subdivisions in the avian pallium above and below the ventricle and the associated mesopallium lamina have similar molecular profiles, leading to a hypothesis that they may form as continuous subdivisions around the lateral ventricle. To explore this hypothesis, here we profiled the expression of 16 genes at eight developmental stages. The genes included those that define brain subdivisions in the adult and some that are also involved in brain development. We found that phyletic hierarchical cluster and linear regression network analyses of gene expression profiles implicated single and mixed ancestry of these brain regions at early embryonic stages. Most gene expression-defined pallial subdivisions began as one ventral or dorsal domain that later formed specific folds around the lateral ventricle. Subsequently a clear ventricle boundary formed, partitioning them into dorsal and ventral pallial subdivisions surrounding the mesopallium lamina. These subdivisions each included two parts of the mesopallium, the nidopallium and hyperpallium, and the arcopallium and hippocampus, respectively. Each subdivision expression profile had a different temporal order of appearance, similar in timing to the order of analogous cell types of the mammalian cortex. Furthermore, like the mammalian pallium, expression in the ventral pallial subdivisions became distinct during prehatch development, whereas the dorsal portions did so during posthatch development. These findings support the continuum hypothesis of avian brain subdivision development around the ventricle and influence hypotheses on homologies of the avian pallium with other vertebrates.Item Open Access The genome of a songbird.(Nature, 2010-04-01) Warren, Wesley C; Clayton, David F; Ellegren, Hans; Arnold, Arthur P; Hillier, Ladeana W; Künstner, Axel; Searle, Steve; White, Simon; Vilella, Albert J; Fairley, Susan; Heger, Andreas; Kong, Lesheng; Ponting, Chris P; Jarvis, Erich D; Mello, Claudio V; Minx, Pat; Lovell, Peter; Velho, Tarciso AF; Ferris, Margaret; Balakrishnan, Christopher N; Sinha, Saurabh; Blatti, Charles; London, Sarah E; Li, Yun; Lin, Ya-Chi; George, Julia; Sweedler, Jonathan; Southey, Bruce; Gunaratne, Preethi; Watson, Michael; Nam, Kiwoong; Backström, Niclas; Smeds, Linnea; Nabholz, Benoit; Itoh, Yuichiro; Whitney, Osceola; Pfenning, Andreas R; Howard, Jason; Völker, Martin; Skinner, Bejamin M; Griffin, Darren K; Ye, Liang; McLaren, William M; Flicek, Paul; Quesada, Victor; Velasco, Gloria; Lopez-Otin, Carlos; Puente, Xose S; Olender, Tsviya; Lancet, Doron; Smit, Arian FA; Hubley, Robert; Konkel, Miriam K; Walker, Jerilyn A; Batzer, Mark A; Gu, Wanjun; Pollock, David D; Chen, Lin; Cheng, Ze; Eichler, Evan E; Stapley, Jessica; Slate, Jon; Ekblom, Robert; Birkhead, Tim; Burke, Terry; Burt, David; Scharff, Constance; Adam, Iris; Richard, Hugues; Sultan, Marc; Soldatov, Alexey; Lehrach, Hans; Edwards, Scott V; Yang, Shiaw-Pyng; Li, Xiaoching; Graves, Tina; Fulton, Lucinda; Nelson, Joanne; Chinwalla, Asif; Hou, Shunfeng; Mardis, Elaine R; Wilson, Richard KThe zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.