Browsing by Author "Pianalto, Kaila M"
Results Per Page
Sort Options
Item Open Access Characterization of additional components of the environmental pH-sensing complex in the pathogenic fungus Cryptococcus neoformans.(The Journal of biological chemistry, 2018-06) Pianalto, Kaila M; Ost, Kyla S; Brown, Hannah E; Alspaugh, J AndrewPathogenic microorganisms must adapt to changes in their immediate surroundings, including alterations in pH, to survive the shift from the external environment to that of the infected host. In the basidiomycete fungal pathogen Cryptococcus neoformans, these pH changes are primarily sensed by the fungus-specific, alkaline pH-sensing Rim/Pal pathway. The C. neoformans Rim pathway has diverged significantly from that described in ascomycete fungi. We recently identified the C. neoformans putative pH sensor Rra1, which activates the Rim pathway in response to elevated pH. In this study, we probed the function of Rra1 by analyzing its cellular localization and performing protein co-immunoprecipitation to identify potential Rra1 interactors. We found that Rra1 does not strongly colocalize or interact with immediate downstream Rim pathway components. However, these experiments identified a novel Rra1 interactor, the previously uncharacterized C. neoformans nucleosome assembly protein 1 (Nap1), which was required for Rim pathway activation. We observed that Nap1 specifically binds to the C-terminal tail of the Rra1 sensor, probably promoting Rra1 protein stability. This function of Nap1 is conserved in fungi closely related to C. neoformans that contain Rra1 orthologs, but not in the more distantly related ascomycete fungus Saccharomyces cerevisiae In conclusion, our findings have revealed the sophisticated, yet distinct, molecular mechanisms by which closely and distantly related microbial phyla rapidly adapt to environmental signals and changes, such as alterations in pH.Item Open Access Defects in intracellular trafficking of fungal cell wall synthases lead to aberrant host immune recognition.(PLoS pathogens, 2018-06-04) Esher, Shannon K; Ost, Kyla S; Kohlbrenner, Maria A; Pianalto, Kaila M; Telzrow, Calla L; Campuzano, Althea; Nichols, Connie B; Munro, Carol; Wormley, Floyd L; Alspaugh, J AndrewThe human fungal pathogen, Cryptococcus neoformans, dramatically alters its cell wall, both in size and composition, upon entering the host. This cell wall remodeling is essential for host immune avoidance by this pathogen. In a genetic screen for mutants with changes in their cell wall, we identified a novel protein, Mar1, that controls cell wall organization and immune evasion. Through phenotypic studies of a loss-of-function strain, we have demonstrated that the mar1Δ mutant has an aberrant cell surface and a defect in polysaccharide capsule attachment, resulting in attenuated virulence. Furthermore, the mar1Δ mutant displays increased staining for exposed cell wall chitin and chitosan when the cells are grown in host-like tissue culture conditions. However, HPLC analysis of whole cell walls and RT-PCR analysis of cell wall synthase genes demonstrated that this increased chitin exposure is likely due to decreased levels of glucans and mannans in the outer cell wall layers. We observed that the Mar1 protein differentially localizes to cellular membranes in a condition dependent manner, and we have further shown that the mar1Δ mutant displays defects in intracellular trafficking, resulting in a mislocalization of the β-glucan synthase catalytic subunit, Fks1. These cell surface changes influence the host-pathogen interaction, resulting in increased macrophage activation to microbial challenge in vitro. We established that several host innate immune signaling proteins are required for the observed macrophage activation, including the Card9 and MyD88 adaptor proteins, as well as the Dectin-1 and TLR2 pattern recognition receptors. These studies explore novel mechanisms by which a microbial pathogen regulates its cell surface in response to the host, as well as how dysregulation of this adaptive response leads to defective immune avoidance.Item Open Access Identifying a Novel Connection Between the Fungal Plasma Membrane and pH-Sensing.(Molecular microbiology, 2018-06-08) Brown, Hannah E; Ost, Kyla S; Esher, Shannon K; Pianalto, Kaila M; Saelens, Joseph W; Guan, Ziqiang; Andrew Alspaugh, JThe mechanisms by which micro-organisms sense and internalize extracellular pH signals are not completely understood. One example of a known external pH-sensing process is the fungal-specific Rim/Pal signal transduction pathway. Fungi, such as the opportunistic pathogen Cryptococcus neoformans, use Rim signaling to sense and respond to changes in environmental pH. Mutations in this pathway result in strains that are attenuated for survival at alkaline pH, and often for survival within the host. Here, we used an insertional mutagenesis screen to identify novel genes required for C. neoformans growth at host pH. We discovered altered alkaline pH growth in several strains with specific defects in plasma membrane composition and maintenance of phospholipid assembly. Among these, loss of function of the Cdc50 lipid flippase regulatory subunit affected the temporal dynamics of Rim pathway activation. We defined distinct and overlapping cellular processes regulated by Rim101 and Cdc50 through analysis of the transcriptome in these mutant strains. We further explored how pH-induced membrane changes affect membrane-bound pH-sensing proteins, specifically the C-terminal domain of the Rra1 protein, an upstream Rim pathway activator and pH sensor. These results suggest both broadly applicable and phylum-specific molecular interactions that drive microbial environmental sensing. This article is protected by copyright. All rights reserved.Item Open Access Responses to Antifungal and Alkaline pH Stress in Human Fungal Pathogens(2019) Pianalto, Kaila MThe fungal pathogens encounter ever-changing conditions during their pathogenic life cycles, including shifts from the environment to the human host. Fungi have evolved many pathways that allow them to overcome and even thrive in the presence of the stresses presented by different environments.
Antifungal drug treatment presents a significant stress for the opportunistic pathogen Cryptococcus neoformans. Currently, there are limited treatment options for cryptococcal infections. Researchers have been working toward identifying drugs that inhibit fungal-specific processes, such as the echinocandins, which target the synthesis of the fungal cell wall component β-1,3-glucan. However, C. neoformans is highly tolerant of these drugs, despite their effective inhibition of the sole and essential cryptococcal β-1,3-glucan synthase. We therefore performed a screen through a deletion mutant collection to identify compensatory processes involved with echinocandin tolerance. In this way, we identified several processes that are required for full tolerance of these drugs, including stress-induced responses and cell wall biosynthesis. Overall, these studies implicate distinct and targetable cellular processes that might be exploited to enhance echinocandin efficacy for treating infections caused by C. neoformans.
An alteration in extracellular pH is another one of the predictable changes that C. neoformans encounters in its shift from its environmental niche to the human host. This environmental increase in pH is internalized into microbial cells through the fungal-specific Rim signal transduction pathway. We have determined that the upstream pH-sensing components of Rim signaling are significantly divergent in the basidiomycete phylum, which includes C. neoformans, agricultural pathogens, and saprophytes. Recently, we identified the first basidiomycete Rim pathway pH sensor, the C. neoformans Rra1 protein.
Through a proteomics-based screen for potential Rra1 pH sensor signaling partners or interactors, we identified nucleosome assembly protein 1 (Nap1) as an interactor of the Rra1 pH sensor. Like Rra1, C. neoformans Nap1 is required for the activation of the Rim pathway. Nap1 specifically interacts with the Rra1 protein, acting as a scaffold to maintain stability of the Rra1 pH sensor protein in the cell. In current work, we are exploring how Nap1 and other proteins regulate the fungal pH sensing complex, through both localization and post-translational modification of the Rra1 pH sensing protein.
Finally, I expanded these studies into another basidiomycete fungus, the skin commensal and pathogen, Malassezia sympodialis. In this fungus, I confirmed that the Rra1 pH sensor is, in fact, a basidiomycete-specific protein and that a functional Rim pathway is required for growth at high pH or salt concentrations. Finally, through RNA-sequencing analyses, we identified genes that are regulated by the Rim pathway in response to alkaline pH. These studies have expanded our knowledge about Rim pathway function in basidiomycete fungi.
Together these inter-related experimental approaches explore ways in which C. neoformans adapts to overcome and survive stressful environments. We have identified novel signaling elements of conserved, stress-response pathways in fungi. Additionally, we have explored mechanisms by which important human pathogens display intrinsic tolerance to established antifungal agents, providing insight into potential new avenues for antimicrobial therapy.