Browsing by Author "Piantadosi, Claude A"
- Results Per Page
- Sort Options
Item Open Access Adrenoceptor blockade modifies regional cerebral blood flow responses to hyperbaric hyperoxia: Protection against CNS oxygen toxicity.(Journal of applied physiology (Bethesda, Md. : 1985), 2018-07-19) Gasier, Heath G; Demchenko, Ivan T; Zhilyaev, Sergei Yu; Moskvin, Alexander N; Krivchenko, Alexander I; Piantadosi, Claude AExposure to extreme-hyperbaric oxygen (HBO2), > 5-6 atmospheres absolute (ATA), produces baroreflex impairment, sympathetic hyperactivation, hypertension, tachycardia, and cerebral hyperemia, known as Phase II, culminating in seizures. We hypothesized that attenuation of the effects of high sympathetic outflow would preserve regional cerebral blood flow (rCBF) and protect against HBO2-induced seizures. To explore this possibility, we tested four adrenoceptor antagonists in conscious and anesthetized rats exposed to HBO2 at 5 and 6 ATA, respectively: phentolamine (nonselective α1 and 2), prazosin (selective α1), propranolol (nonselective β1 and 2) and atenolol (selective β1). In conscious rats, 4 drug-doses were administered to rats prior to HBO2 exposures, and seizure latencies were recorded. Drug-doses that provided similar protection against seizures were administered before HBO2 exposures in anesthetized rats to determine the effects of adrenoceptor blockade on mean arterial pressure, heart rate, rCBF and EEG spikes. All four drugs modified cardiovascular and rCBF responses in HBO2 that aligned with epileptiform discharges, but only phentolamine and propranolol effectively increased EEG spike latencies by ~20 and 36 min, respectively. When phentolamine and propranolol were delivered during HBO2 at the onset of phase II, only propranolol led to sustained reductions in heart rate and rCBF, preventing the appearance of epileptiform discharges. The enhanced effectiveness of propranolol may extend beyond β-adrenoceptor blockade, i.e. membrane stability and reduced metabolic activity. These results indicate that adrenoceptor drug pre-treatment will minimize the effects of excessive sympathetic outflow on rCBF and extend HBO2 exposure time.Item Open Access Anti-hypotensive treatment and endothelin blockade synergistically antagonize exercise fatigue in rats under simulated high altitude.(PLoS One, 2014) Radiloff, Daniel; Zhao, Yulin; Boico, Alina; Blueschke, Gert; Palmer, Gregory; Fontanella, Andrew; Dewhirst, Mark; Piantadosi, Claude A; Noveck, Robert; Irwin, David; Hamilton, Karyn; Klitzman, Bruce; Schroeder, ThiesRapid ascent to high altitude causes illness and fatigue, and there is a demand for effective acute treatments to alleviate such effects. We hypothesized that increased oxygen delivery to the tissue using a combination of a hypertensive agent and an endothelin receptor A antagonist drugs would limit exercise-induced fatigue at simulated high altitude. Our data showed that the combination of 0.1 mg/kg ambrisentan with either 20 mg/kg ephedrine or 10 mg/kg methylphenidate significantly improved exercise duration in rats at simulated altitude of 4,267 m, whereas the individual compounds did not. In normoxic, anesthetized rats, ephedrine alone and in combination with ambrisentan increased heart rate, peripheral blood flow, carotid and pulmonary arterial pressures, breathing rate, and vastus lateralis muscle oxygenation, but under inspired hypoxia, only the combination treatment significantly enhanced muscle oxygenation. Our results suggest that sympathomimetic agents combined with endothelin-A receptor blockers offset altitude-induced fatigue in rats by synergistically increasing the delivery rate of oxygen to hypoxic muscle by concomitantly augmenting perfusion pressure and improving capillary conductance in the skeletal muscle. Our findings might therefore serve as a basis to develop an effective treatment to prevent high-altitude illness and fatigue in humans.Item Open Access Baroreceptor afferents modulate brain excitation and influence susceptibility to toxic effects of hyperbaric oxygen.(Journal of applied physiology (Bethesda, Md. : 1985), 2014-09) Demchenko, Ivan T; Gasier, Heath G; Zhilyaev, Sergei Yu; Moskvin, Alexander N; Krivchenko, Alexander I; Piantadosi, Claude A; Allen, Barry WUnexplained adjustments in baroreflex sensitivity occur in conjunction with exposures to potentially toxic levels of hyperbaric oxygen. To investigate this, we monitored central nervous system, autonomic and cardiovascular responses in conscious and anesthetized rats exposed to hyperbaric oxygen at 5 and 6 atmospheres absolute, respectively. We observed two contrasting phases associated with time-dependent alterations in the functional state of the arterial baroreflex. The first phase, which conferred protection against potentially neurotoxic doses of oxygen, was concurrent with an increase in baroreflex sensitivity and included decreases in cerebral blood flow, heart rate, cardiac output, and sympathetic drive. The second phase was characterized by baroreflex impairment, cerebral hyperemia, spiking on the electroencephalogram, increased sympathetic drive, parasympatholysis, and pulmonary injury. Complete arterial baroreceptor deafferentation abolished the initial protective response, whereas electrical stimulation of intact arterial baroreceptor afferents prolonged it. We concluded that increased afferent traffic attributable to arterial baroreflex activation delays the development of excessive central excitation and seizures. Baroreflex inactivation or impairment removes this protection, and seizures may follow. Finally, electrical stimulation of intact baroreceptor afferents extends the normal delay in seizure development. These findings reveal that the autonomic nervous system is a powerful determinant of susceptibility to sympathetic hyperactivation and seizures in hyperbaric oxygen and the ensuing neurogenic pulmonary injury.Item Open Access Carbon Monoxide and Exercise Prevents Diet-Induced Obesity and Metabolic Dysregulation Without Affecting Bone.(Obesity (Silver Spring, Md.), 2020-05) Gasier, Heath G; Yu, Tianzheng; Swift, Joshua M; Metzger, Corrine E; McNerny, Erin M; Swallow, Elizabeth A; Piantadosi, Claude A; Allen, Matthew RObjective
Carbon monoxide (CO) may counteract obesity and metabolic dysfunction in rodents consuming high-fat diets, but the skeletal effects are not understood. This study investigated whether low-dose inhaled CO (250 ppm) with or without moderate intensity aerobic exercise (3 h/wk) would limit diet-induced obesity and metabolic dysregulation and preserve bone health.Methods
Obesity-resistant (OR) rats served as controls, and obesity-prone (OP) rats were randomized to sedentary, sedentary plus CO, exercise, or CO plus exercise. For 10 weeks, OP rats consumed a high-fat, high-sucrose diet, whereas OR rats consumed a low-fat control diet. Measurements included indicators of obesity and metabolism, bone turnover markers, femoral geometry and microarchitecture, bone mechanical properties, and tibial morphometry.Results
A high-fat, high-sucrose diet led to obesity, hyperinsulinemia, and hyperleptinemia, without impacting bone. CO alone led only to a modest reduction in weight gain. Exercise attenuated weight gain and improved the metabolic profile; however, bone fragility increased. Combined CO and exercise led to body mass reduction and a metabolic state similar to control OR rats and prevented the exercise-induced increase in bone fragility.Conclusions
CO and aerobic exercise training prevent obesity and metabolic sequelae of nutrient excess while stabilizing bone physiology.Item Open Access Co-regulation of nuclear respiratory factor-1 by NFkappaB and CREB links LPS-induced inflammation to mitochondrial biogenesis.(J Cell Sci, 2010-08-01) Suliman, Hagir B; Sweeney, Timothy E; Withers, Crystal M; Piantadosi, Claude AThe nuclear respiratory factor-1 (NRF1) gene is activated by lipopolysaccharide (LPS), which might reflect TLR4-mediated mitigation of cellular inflammatory damage via initiation of mitochondrial biogenesis. To test this hypothesis, we examined NRF1 promoter regulation by NFκB, and identified interspecies-conserved κB-responsive promoter and intronic elements in the NRF1 locus. In mice, activation of Nrf1 and its downstream target, Tfam, by Escherichia coli was contingent on NFκB, and in LPS-treated hepatocytes, NFκB served as an NRF1 enhancer element in conjunction with NFκB promoter binding. Unexpectedly, optimal NRF1 promoter activity after LPS also required binding by the energy-state-dependent transcription factor CREB. EMSA and ChIP assays confirmed p65 and CREB binding to the NRF1 promoter and p65 binding to intron 1. Functionality for both transcription factors was validated by gene-knockdown studies. LPS regulation of NRF1 led to mtDNA-encoded gene expression and expansion of mtDNA copy number. In cells expressing plasmid constructs containing the NRF-1 promoter and GFP, LPS-dependent reporter activity was abolished by cis-acting κB-element mutations, and nuclear accumulation of NFκB and CREB demonstrated dependence on mitochondrial H(2)O(2). These findings indicate that TLR4-dependent NFκB and CREB activation co-regulate the NRF1 promoter with NFκB intronic enhancement and redox-regulated nuclear translocation, leading to downstream target-gene expression, and identify NRF-1 as an early-phase component of the host antibacterial defenses.Item Open Access Effects of striatal nitric oxide production on regional cerebral blood flow and seizure development in rats exposed to extreme hyperoxia.(Journal of applied physiology (Bethesda, Md. : 1985), 2015-12) Gasier, Heath G; Demchenko, Ivan T; Allen, Barry W; Piantadosi, Claude AThe endogenous vasodilator and signaling molecule nitric oxide has been implicated in cerebral hyperemia, sympathoexcitation, and seizures induced by hyperbaric oxygen (HBO2) at or above 3 atmospheres absolute (ATA). It is unknown whether these events in the onset of central nervous system oxygen toxicity originate within specific brain structures and whether blood flow is diverted to the brain from peripheral organs with high basal flow, such as the kidney. To explore these questions, total and regional cerebral blood flow (CBF) were measured in brain structures of the central autonomic network in anesthetized rats in HBO2 at 6 ATA. Electroencephalogram (EEG) recordings, cardiovascular hemodynamics, and renal blood flow (RBF) were also monitored. As expected, mean arterial blood pressure and total and regional CBF increased preceding EEG spikes while RBF was unaltered. Of the brain structures examined, the earliest rise in CBF occurred in the striatum, suggesting increased neuronal activation. Continuous unilateral or bilateral striatal infusion of the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester attenuated CBF responses in that structure, but global EEG discharges persisted and did not differ from controls. Our novel findings indicate that: 1) cerebral hyperemia in extreme HBO2 in rats does not occur at the expense of renal perfusion, highlighting the remarkable autoregulatory capability of the kidney, and 2) in spite of a sentinel increase in striatal blood flow, additional brain structure(s) likely govern the pathogenesis of HBO2-induced seizures because EEG discharge latency was unchanged by local blockade of striatal nitric oxide production and concomitant hyperemia.Item Open Access GAT inhibition preserves cerebral blood flow and reduces oxidant damage to mitochondria in rodents exposed to extreme hyperbaric oxygen.(Frontiers in molecular neuroscience, 2022-01) Demchenko, Ivan T; Suliman, Hagir B; Zhilyaey, Sergey Y; Alekseeva, Olga S; Platonova, Tatyana F; Makowski, Matthew S; Piantadosi, Claude A; Gasier, Heath GOxygen breathing at elevated partial pressures (PO2's) at or more than 3 atmospheres absolute (ATA) causes a reduction in brain γ-aminobutyric acid (GABA) levels that impacts the development of central nervous system oxygen toxicity (CNS-OT). Drugs that increase brain GABA content delay the onset of CNS-OT, but it is unknown if oxidant damage is lessened because brain tissue PO2 remains elevated during hyperbaric oxygen (HBO2) exposures. Experiments were performed in rats and mice to measure brain GABA levels with or without GABA transporter inhibitors (GATs) and its influence on cerebral blood flow, oxidant damage, and aspects of mitochondrial quality control signaling (mitophagy and biogenesis). In rats pretreated with tiagabine (GAT1 inhibitor), the tachycardia, secondary rise in mean arterial blood pressure, and cerebral hyperemia were prevented during HBO2 at 5 and 6 ATA. Tiagabine and the nonselective GAT inhibitor nipecotic acid similarly extended HBO2 seizure latencies. In mice pretreated with tiagabine and exposed to HBO2 at 5 ATA, nuclear and mitochondrial DNA oxidation and astrocytosis was attenuated in the cerebellum and hippocampus. Less oxidant injury in these regions was accompanied by reduced conjugated microtubule-associated protein 1A/1B-light chain 3 (LC3-II), an index of mitophagy, and phosphorylated cAMP response element binding protein (pCREB), an initiator of mitochondrial biogenesis. We conclude that GABA prevents cerebral hyperemia and delays neuroexcitation under extreme HBO2, limiting oxidant damage in the cerebellum and hippocampus, and likely lowering mitophagy flux and initiation of pCREB-initiated mitochondrial biogenesis.Item Open Access Heme oxygenase-1 regulates mitochondrial quality control in the heart.(JCI Insight, 2017-04-12) Hull, Travis D; Boddu, Ravindra; Guo, Lingling; Tisher, Cornelia C; Traylor, Amie M; Patel, Bindiya; Joseph, Reny; Prabhu, Sumanth D; Suliman, Hagir B; Piantadosi, Claude A; Agarwal, Anupam; George, James FThe cardioprotective inducible enzyme heme oxygenase-1 (HO-1) degrades prooxidant heme into equimolar quantities of carbon monoxide, biliverdin, and iron. We hypothesized that HO-1 mediates cardiac protection, at least in part, by regulating mitochondrial quality control. We treated WT and HO-1 transgenic mice with the known mitochondrial toxin, doxorubicin (DOX). Relative to WT mice, mice globally overexpressing human HO-1 were protected from DOX-induced dilated cardiomyopathy, cardiac cytoarchitectural derangement, and infiltration of CD11b+ mononuclear phagocytes. Cardiac-specific overexpression of HO-1 ameliorated DOX-mediated dilation of the sarcoplasmic reticulum as well as mitochondrial disorganization in the form of mitochondrial fragmentation and increased numbers of damaged mitochondria in autophagic vacuoles. HO-1 overexpression promotes mitochondrial biogenesis by upregulating protein expression of NRF1, PGC1α, and TFAM, which was inhibited in WT animals treated with DOX. Concomitantly, HO-1 overexpression inhibited the upregulation of the mitochondrial fission mediator Fis1 and resulted in increased expression of the fusion mediators, Mfn1 and Mfn2. It also prevented dynamic changes in the levels of key mediators of the mitophagy pathway, PINK1 and parkin. Therefore, these findings suggest that HO-1 has a novel role in protecting the heart from oxidative injury by regulating mitochondrial quality control.Item Open Access Heme Oxygenase-1/Carbon Monoxide System and Embryonic Stem Cell Differentiation and Maturation into Cardiomyocytes.(Antioxid Redox Signal, 2016-03-01) Suliman, Hagir B; Zobi, Fabio; Piantadosi, Claude AAIMS: The differentiation of embryonic stem (ES) cells into energetically efficient cardiomyocytes contributes to functional cardiac repair and is envisioned to ameliorate progressive degenerative cardiac diseases. Advanced cell maturation strategies are therefore needed to create abundant mature cardiomyocytes. In this study, we tested whether the redox-sensitive heme oxygenase-1/carbon monoxide (HO-1/CO) system, operating through mitochondrial biogenesis, acts as a mechanism for ES cell differentiation and cardiomyocyte maturation. RESULTS: Manipulation of HO-1/CO to enhance mitochondrial biogenesis demonstrates a direct pathway to ES cell differentiation and maturation into beating cardiomyocytes that express adult structural markers. Targeted HO-1/CO interventions up- and downregulate specific cardiogenic transcription factors, transcription factor Gata4, homeobox protein Nkx-2.5, heart- and neural crest derivatives-expressed protein 1, and MEF2C. HO-1/CO overexpression increases cardiac gene expression for myosin regulatory light chain 2, atrial isoform, MLC2v, ANP, MHC-β, and sarcomere α-actinin and the major mitochondrial fusion regulators, mitofusin 2 and MICOS complex subunit Mic60. This promotes structural mitochondrial network expansion and maturation, thereby supporting energy provision for beating embryoid bodies. These effects are prevented by silencing HO-1 and by mitochondrial reactive oxygen species scavenging, while disruption of mitochondrial biogenesis and mitochondrial DNA depletion by loss of mitochondrial transcription factor A compromise infrastructure. This leads to failure of cardiomyocyte differentiation and maturation and contractile dysfunction. INNOVATION: The capacity to augment cardiomyogenesis via a defined mitochondrial pathway has unique therapeutic potential for targeting ES cell maturation in cardiac disease. CONCLUSION: Our findings establish the HO-1/CO system and redox regulation of mitochondrial biogenesis as essential factors in ES cell differentiation as well as in the subsequent maturation of these cells into functional cardiac cells.Item Open Access Increased Antiseizure Effectiveness with Tiagabine Combined with Sodium Channel Antagonists in Mice Exposed to Hyperbaric Oxygen.(Neurotoxicity research, 2019-11) Demchenko, Ivan T; Zhilyaev, Sergei Yu; Alekseeva, Olga S; Krivchenko, Alexander I; Piantadosi, Claude A; Gasier, Heath GHyperbaric oxygen (HBO2) is acutely toxic to the central nervous system, culminating in EEG spikes and tonic-clonic convulsions. GABA enhancers and sodium channel antagonists improve seizure latencies in HBO2 when administered individually, while combining antiepileptic drugs from different functional classes can provide greater seizure latency. We examined the combined effectiveness of GABA enhancers (tiagabine and gabapentin) with sodium channel antagonists (carbamazepine and lamotrigine) in delaying HBO2-induced seizures. A series of experiments in C57BL/6 mice exposed to 100% oxygen at 5 atmospheres absolute (ATA) were performed. We predicted equally effective doses from individual drug-dose response curves, and the combinations of tiagabine + carbamazepine or lamotrigine were tested to determine the maximally effective combined doses to be used in subsequent experiments designed to identify the type of pharmacodynamic interaction for three fixed-ratio combinations (1:3, 1:1, and 3:1) using isobolographic analysis. For both combinations, the maximally effective combined doses increased seizure latency over controls > 5-fold and were determined to interact synergistically for fixed ratios 1:1 and 3:1, additive for 1:3. These results led us to explore whether the benefits of these drug combinations could be extended to the lungs, since a centrally mediated mechanism is believed to mediate hyperoxic-induced cardiogenic lung injury. Indeed, both combinations attenuated bronchoalveolar lavage protein content by ~ 50%. Combining tiagabine with carbamazepine or lamotrigine not only affords greater antiseizure protection in HBO2 but also allows for lower doses to be used, minimizing side effects, and attenuating acute lung injury.Item Open Access Mitochondrial Quality Control as a Therapeutic Target.(Pharmacol Rev, 2016-01) Suliman, Hagir B; Piantadosi, Claude AIn addition to oxidative phosphorylation (OXPHOS), mitochondria perform other functions such as heme biosynthesis and oxygen sensing and mediate calcium homeostasis, cell growth, and cell death. They participate in cell communication and regulation of inflammation and are important considerations in aging, drug toxicity, and pathogenesis. The cell's capacity to maintain its mitochondria involves intramitochondrial processes, such as heme and protein turnover, and those involving entire organelles, such as fusion, fission, selective mitochondrial macroautophagy (mitophagy), and mitochondrial biogenesis. The integration of these processes exemplifies mitochondrial quality control (QC), which is also important in cellular disorders ranging from primary mitochondrial genetic diseases to those that involve mitochondria secondarily, such as neurodegenerative, cardiovascular, inflammatory, and metabolic syndromes. Consequently, mitochondrial biology represents a potentially useful, but relatively unexploited area of therapeutic innovation. In patients with genetic OXPHOS disorders, the largest group of inborn errors of metabolism, effective therapies, apart from symptomatic and nutritional measures, are largely lacking. Moreover, the genetic and biochemical heterogeneity of these states is remarkably similar to those of certain acquired diseases characterized by metabolic and oxidative stress and displaying wide variability. This biologic variability reflects cell-specific and repair processes that complicate rational pharmacological approaches to both primary and secondary mitochondrial disorders. However, emerging concepts of mitochondrial turnover and dynamics along with new mitochondrial disease models are providing opportunities to develop and evaluate mitochondrial QC-based therapies. The goals of such therapies extend beyond amelioration of energy insufficiency and tissue loss and entail cell repair, cell replacement, and the prevention of fibrosis. This review summarizes current concepts of mitochondria as disease elements and outlines novel strategies to address mitochondrial dysfunction through the stimulation of mitochondrial biogenesis and quality control.Item Open Access NOS2 Induction and HO-1-Mediated Transcriptional Control in Gram-Negative Peritonitis(2013) Withers, Crystal MicheleNitric oxide (NO) is an endogenous gaseous signaling molecule produced by three NO synthase isoforms (NOS1, 2, 3) and important in host defense. The induction of NOS2 during bacterial sepsis is critical for pathogen clearance but its sustained activation has long been associated with increased mortality secondary to multiple organ dysfunction syndrome (MODS). High levels of NO produced by NOS2 incite intrinsic cellular dysfunction, in part by damaging macromolecules through nitration and/or nitrosylation. These include mitochondrial DNA (mtDNA) and enzymes of key mitochondrial pathways required for maintenance of normal O2 utilization and energy homeostasis. However, animal studies and clinical trials inhibiting NOS2 have demonstrated pronounced organ dysfunction and increased mortality in response to live bacterial infections, confirming that NOS2 confers pro-survival benefits. Of particular interest here, the constitutive NOS1 and NOS3 have been linked to the up-regulation of nuclear genes involved in mitochondrial biogenesis but no comparable role has been described for NOS2. Therefore, I hypothesized that NOS2 is indispensible for host protection but must be tightly regulated to ensure NO levels are high enough to activate mitochondrial and other pro-survival genes, but below the threshold for cellular damage.
This hypothesis was explored with two major Aims. The first Aim was to define the role of NOS2 in the activation of mitochondrial biogenesis in the heart of E. coli-treated mice. The second was to investigate the ability of NOS2 to be transcriptionally regulated by an enzyme previously shown to induce mitochondrial biogenesis, heme oxygenase-1 (HO-1). This hypothesis was tested using an in vivo model of sublethal heat-killed E. coli (HkEC) peritonitis in C57B/L6 (Wt), NOS2-/-, and TLR4-/- mice. Additionally, in vitro systems of mouse AML-12 or Hepa 1-6 cells pretreated with HO-1 activators or Hmox1 shRNA prior to inflammatory challenge with lipopolysaccharide (LPS) +/- tumor necrosis factor-α (TNF-α). For the first Aim, Wt, NOS2-/-, and TLR4-/- mice were treated with (HkEC and cardiac tissue analyzed for mitochondrial function, expression of nuclear and mitochondrial proteins needed for mitochondrial biogenesis, and histological expression of NOS2 and TLR4 relative to changes in mitochondrial mass. For the second Aim, Wt mice were pretreated with hemin or carbon monoxide (CO) to activate HO-1 prior to HkEC-peritonitis. Liver tissue in these animals was evaluated at four hours for HO-1 induction, Nos2 mRNA expression, cytokine profiles, and nuclear factor (NF)-κB activation. Liver cell lines were pretreated with hemin, CO-releasing molecule (CORM), or bilirubin one hour before LPS exposure and the Nos2 transcriptional response evaluated at two and 24 hours. The MTT assay was used to confirm that in vitro treatments were not lethal.
These studies demonstrated that HkEC induced mtDNA damage in the heart that was repaired in Wt mice but not in NOS2-deficient mice. In KO mice, sustained mtDNA damage was associated with the reduced expression of nuclear (NRF-1, PGC-1α) and mitochondrial (Tfam, Pol-γ) proteins needed for mitochondrial biogenesis. The findings thus supported that NOS2 is required for mitochondrial biogenesis in the heart during Gram-negative challenge. Evaluation of the relationship between HO-1 and NOS2 in murine liver was more complex; HO-1 activation in HkEC-treated Wt mice attenuated 4-hour Nos2 gene transcription. In liver cell lines, hemin, CORM, and bilirubin were unable to suppress Nos2 expression at the time of maximal induction (2 hours). Nos2 was, however, suppressed by 24 hours, suggesting that the regulatory impact of HO-1 induction was not engaged early enough to reduce Nos2 transcription at 2 hours. It is concluded that NOS2 induction in bacterial sepsis optimizes the expression of the mitochondrial biogenesis transcriptional program, which subsequently can also be regulated by HO-1/CO in murine liver. This provides a potential new mechanism by which immune suppression and mitochondrial repair can occur in tandem during the acute inflammatory response.
Item Open Access Pharmacologic Targeting of Red Blood Cells to Improve Tissue Oxygenation.(Clin Pharmacol Ther, 2017-12-14) Reynolds, James D; Jenkins, Trevor; Matto, Faisal; Nazemian, Ryan; Farhan, Obada; Morris, Nathan; Longphre, John M; Hess, Douglas T; Moon, Richard E; Piantadosi, Claude A; Stamler, Jonathan SDisruption of microvascular blood flow is a common cause of tissue hypoxia in disease, yet no therapies are available that directly target the microvasculature to improve tissue oxygenation. Red blood cells (RBCs) autoregulate blood flow through S-nitroso-hemoglobin (SNO-Hb)-mediated export of nitric oxide (NO) bioactivity. We therefore tested the idea that pharmacological enhancement of RBCs using the S-nitrosylating agent ethyl nitrite (ENO) may provide a novel approach to improve tissue oxygenation. Serial ENO dosing was carried out in sheep (1-400 ppm) and humans (1-100 ppm) at normoxia and at reduced fraction of inspired oxygen (FiO2 ). ENO increased RBC SNO-Hb levels, corrected hypoxia-induced deficits in tissue oxygenation, and improved measures of oxygen utilization in both species. No adverse effects or safety concerns were identified. Inasmuch as impaired oxygenation is a major cause of morbidity and mortality, ENO may have widespread therapeutic utility, providing a first-in-class agent targeting the microvasculature.Item Open Access Redox mechanisms of cardiomyocyte mitochondrial protection.(Front Physiol, 2015) Bartz, Raquel R; Suliman, Hagir B; Piantadosi, Claude AOxidative and nitrosative stress are primary contributors to the loss of myocardial tissue in insults ranging from ischemia/reperfusion injury from coronary artery disease and heart transplantation to sepsis-induced myocardial dysfunction and drug-induced myocardial damage. This cell damage caused by oxidative and nitrosative stress leads to mitochondrial protein, DNA, and lipid modifications, which inhibits energy production and contractile function, potentially leading to cell necrosis and/or apoptosis. However, cardiomyocytes have evolved an elegant set of redox-sensitive mechanisms that respond to and contain oxidative and nitrosative damage. These responses include the rapid induction of antioxidant enzymes, mitochondrial DNA repair mechanisms, selective mitochondrial autophagy (mitophagy), and mitochondrial biogenesis. Coordinated cytoplasmic to nuclear cell-signaling and mitochondrial transcriptional responses to the presence of elevated cytoplasmic oxidant production, e.g., H2O2, allows nuclear translocation of the Nfe2l2 transcription factor and up-regulation of downstream cytoprotective genes such as heme oxygenase-1 which generates physiologic signals, such as CO that up-regulates Nfe212 gene transcription. Simultaneously, a number of other DNA binding transcription factors are expressed and/or activated under redox control, such as Nuclear Respiratory Factor-1 (NRF-1), and lead to the induction of genes involved in both intracellular and mitochondria-specific repair mechanisms. The same insults, particularly those related to vascular stress and inflammation also produce elevated levels of nitric oxide, which also has mitochondrial protein thiol-protective functions and induces mitochondrial biogenesis through cyclic GMP-dependent and perhaps other pathways. This brief review provides an overview of these pathways and interconnected cardiac repair mechanisms.Item Open Access S-nitrosylation of GAD65 is implicated in decreased GAD activity and oxygen-induced seizures.(Neuroscience letters, 2017-07) Gasier, Heath G; Demchenko, Ivan T; Tatro, Lynn G; Piantadosi, Claude ABreathing oxygen at partial pressures ≥2.5 atmospheres absolute, which can occur in diving and hyperbaric oxygen (HBO2) therapy, can rapidly become toxic to the central nervous system (CNS). This neurotoxicity culminates in generalized EEG epileptiform discharges, tonic-clonic convulsions and ultimately death. Increased production of neuronal nitric oxide (NO) has been implicated in eliciting hyperoxic seizures by altering the equilibrium between glutamatergic and GABAergic synaptic transmission. Inhibition of glutamic acid decarboxylase (GAD) activity in HBO2 promotes this imbalance; however, the mechanisms by which this occurs is unknown. Therefore, we conducted a series of experiments using mice, a species that is highly susceptible to CNS oxygen toxicity, to explore the possibility that NO modulates GABA metabolism. Mice were exposed to 100% oxygen at 4 ATA for various durations, and brain GAD and GABA transaminase (GABA-T) activity, as well as S-nitrosylation of GAD65 and GAD67 were determined. HBO2 inhibited GAD activity by 50% and this was negatively correlated with S-nitrosylation of GAD65, whereas GABA-T activity and S-nitrosylation of GAD67 were unaltered. These results suggest a new mechanism by which NO alters GABA metabolism, leading to neuroexcitation and seizures in HBO2.Item Open Access Skeletal muscle mitochondrial fragmentation and impaired bioenergetics from nutrient overload are prevented by carbon monoxide.(American journal of physiology. Cell physiology, 2020-10) Gasier, Heath G; Dohl, Jacob; Suliman, Hagir B; Piantadosi, Claude A; Yu, TianzhengNutrient excess increases skeletal muscle oxidant production and mitochondrial fragmentation that may result in impaired mitochondrial function, a hallmark of skeletal muscle insulin resistance. This led us to explore whether an endogenous gas molecule, carbon monoxide (CO), which is thought to prevent weight gain and metabolic dysfunction in mice consuming high-fat diets, alters mitochondrial morphology and respiration in C2C12 myoblasts exposed to high glucose (15.6 mM) and high fat (250 µM BSA-palmitate) (HGHF). Also, skeletal muscle mitochondrial morphology, distribution, respiration, and energy expenditure were examined in obese resistant (OR) and obese prone (OP) rats that consumed a high-fat and high-sucrose diet for 10 wk with or without intermittent low-dose inhaled CO and/or exercise training. In cells exposed to HGHF, superoxide production, mitochondrial membrane potential (ΔΨm), mitochondrial fission regulatory protein dynamin-related protein 1 (Drp1) and mitochondrial fragmentation increased, while mitochondrial respiratory capacity was reduced. CO decreased HGHF-induced superoxide production, Drp1 protein levels and mitochondrial fragmentation, maintained ΔΨm, and increased mitochondrial respiratory capacity. In comparison with lean OR rats, OP rats had smaller skeletal muscle mitochondria that contained disorganized cristae, a normal mitochondrial distribution, but reduced citrate synthase protein expression, normal respiratory responses, and a lower energy expenditure. The combination of inhaled CO and exercise produced the greatest effect on mitochondrial morphology, increasing ADP-stimulated respiration in the presence of pyruvate, and preventing a decline in resting energy expenditure. These data support a therapeutic role for CO and exercise in preserving mitochondrial morphology and respiration during metabolic overload.Item Open Access The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy.(J Clin Invest, 2007-12) Suliman, Hagir B; Carraway, Martha Sue; Ali, Abdelwahid S; Reynolds, Chrystal M; Welty-Wolf, Karen E; Piantadosi, Claude AThe clinical utility of anthracycline anticancer agents, especially doxorubicin, is limited by a progressive toxic cardiomyopathy linked to mitochondrial damage and cardiomyocyte apoptosis. Here we demonstrate that the post-doxorubicin mouse heart fails to upregulate the nuclear program for mitochondrial biogenesis and its associated intrinsic antiapoptosis proteins, leading to severe mitochondrial DNA (mtDNA) depletion, sarcomere destruction, apoptosis, necrosis, and excessive wall stress and fibrosis. Furthermore, we exploited recent evidence that mitochondrial biogenesis is regulated by the CO/heme oxygenase (CO/HO) system to ameliorate doxorubicin cardiomyopathy in mice. We found that the myocardial pathology was averted by periodic CO inhalation, which restored mitochondrial biogenesis and circumvented intrinsic apoptosis through caspase-3 and apoptosis-inducing factor. Moreover, CO simultaneously reversed doxorubicin-induced loss of DNA binding by GATA-4 and restored critical sarcomeric proteins. In isolated rat cardiac cells, HO-1 enzyme overexpression prevented doxorubicin-induced mtDNA depletion and apoptosis via activation of Akt1/PKB and guanylate cyclase, while HO-1 gene silencing exacerbated doxorubicin-induced mtDNA depletion and apoptosis. Thus doxorubicin disrupts cardiac mitochondrial biogenesis, which promotes intrinsic apoptosis, while CO/HO promotes mitochondrial biogenesis and opposes apoptosis, forestalling fibrosis and cardiomyopathy. These findings imply that the therapeutic index of anthracycline cancer chemotherapeutics can be improved by the protection of cardiac mitochondrial biogenesis.Item Open Access The HO-1/CO System and Mitochondrial Quality Control in Skeletal Muscle.(Exercise and sport sciences reviews, 2021-10-22) Gasier, Heath G; Suliman, Hagir B; Piantadosi, Claude AAbstract
Inducible heme oxygenase (HO)-1 catalyzes the breakdown of heme to biliverdin, iron and carbon monoxide (CO). CO binds to cytochrome c oxidase and alters mitochondrial redox balance and coordinately regulates mitochondrial quality control (MQC) during oxidant stress and inflammation. The hypothesis presented is that skeletal muscle HO-1/CO system helps modulate components in the MQC cycle during metabolic stress.Item Open Access Toll-like Receptor (TLR) Signaling and Differential Activation of PGC Family Genes in a Mouse Model of Staphylococcus aureus Sepsis(2010) Sweeney, Timothy ElishaSepsis is a major cause of morbidity and mortality in the United States, and Staphylococcus aureus (S. aureus) is the bacteria most commonly cultured from septic patients. In severe sepsis, the relationship between the systemic inflammatory response and the resulting mitochondrial and metabolic dysfunction is not fully understood, especially with respect to the mechanisms of mitochondrial damage resolution. The process of mitochondrial biogenesis, which leads to the restoration of metabolic and anti-oxidative functions in damaged or stressed cells and tissues, is pro-survival and is a critical protective response in sepsis. Mitochondrial biogenesis requires the coordinated expression of multiple regulatory proteins, including the PPARgamma-coactivator (PGC) family of proteins. Previous work in sepsis has focused on mitochondrial biogenesis in response to late signals of mitochondrial damage; however, for acute sepsis, we have hypothesized a direct and early link between the innate immune response and the transcriptional activation of mitochondrial biogenesis. Since the Toll-like receptors (TLRs) are a major part of the innate immune response, we hypothesized that they could activate mitochondrial biogenesis in bacterial sepsis. Earlier work showed that TLR4 (which responds to components of Gram-negative bacteria) was necessary for mitochondrial biogenesis induction in response to heat-killed E. coli challenge. For this work, the objective was to investigate whether signaling by TLR2 (which responds to components of Gram-positive bacteria) would activate mitochondrial biogenesis in response to S. aureus sepsis in mice. The sepsis model was initially characterized in wild-type (WT) mice by PCR analysis of hepatic RNA, in which the up-regulation of several regulatory proteins for mitochondrial biogenesis, including all three PGC family members, was observed. In contrast, in both TLR2-/- and TLR4-/- mice, the mitochondrial biogenesis response was deficient and delayed. In addition, PGC-1alpha and PGC-1beta were differentially regulated in WT, TLR2-/-, and TLR4-/- mice. To identify the mechanisms involved in this induction pattern, the known TLR signaling pathways were systematically probed for activation using several strains of genetic knockout mice. These data demonstrated that the differential regulation of the PGC family is independent of the MyD88 adapter protein and is caused in part by IRF7 signaling. IRF7 is a pro-inflammatory transcription factor that is normally involved in the interferon response; in this case, IRF7 was found to be necessary but not sufficient for PGC-1alpha/beta induction. In addition, a second level of regulation was identified in the microRNA mmu-mir-202-3p, which is inversely correlated with the expression of PGC-1alpha and PGC-1beta mRNA in WT, TLR2-/-, and TLR4-/- mice and was shown to functionally decrease PGC-1alpha mRNA. If these observations are confirmed in humans, IRF7 and mir-202-3p may be potential therapeutic targets for the up-regulation of PGC-1alpha/beta levels in the clinical setting of sepsis and impaired mitochondrial biogenesis.