Browsing by Author "Pitisuttithum, Punnee"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Aggregate complexes of HIV-1 induced by multimeric antibodies.(Retrovirology, 2014-10-02) Stieh, Daniel J; King, Deborah F; Klein, Katja; Liu, Pinghuang; Shen, Xiaoying; Hwang, Kwan Ki; Ferrari, Guido; Montefiori, David C; Haynes, Barton; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Michael, Nelson L; Robb, Merlin L; Kim, Jerome H; Denny, Thomas N; Tomaras, Georgia D; Shattock, Robin JBACKGROUND: Antibody mediated viral aggregation may impede viral transfer across mucosal surfaces by hindering viral movement in mucus, preventing transcytosis, or reducing inter-cellular penetration of epithelia thereby limiting access to susceptible mucosal CD4 T cells and dendritic cells. These functions may work together to provide effective immune exclusion of virus from mucosal tissue; however little is known about the antibody characteristics required to induce HIV aggregation. Such knowledge may be critical to the design of successful immunization strategies to facilitate viral immune exclusion at the mucosal portals of entry. RESULTS: The potential of neutralizing and non-neutralizing IgG and IgA monoclonals (mAbs) to induce HIV-1 aggregation was assessed by Dynamic light scattering (DLS). Although neutralizing and non-neutralizing IgG mAbs and polyclonal HIV-Ig efficiently aggregated soluble Env trimers, they were not capable of forming viral aggregates. In contrast, dimeric (but not monomeric) IgA mAbs induced stable viral aggregate populations that could be separated from uncomplexed virions. Epitope specificity influenced both the degree of aggregation and formation of higher order complexes by dIgA. IgA purified from serum of uninfected RV144 vaccine trial responders were able to efficiently opsonize viral particles in the absence of significant aggregation, reflective of monomeric IgA. CONCLUSIONS: These results collectively demonstrate that dIgA is capable of forming stable viral aggregates providing a plausible basis for testing the effectiveness of aggregation as a potential protection mechanism at the mucosal portals of viral entry.Item Open Access HIV-1 Envelope Glycoproteins from Diverse Clades Differentiate Antibody Responses and Durability among Vaccinees.(Journal of virology, 2018-04) Yates, Nicole L; deCamp, Allan C; Korber, Bette T; Liao, Hua-Xin; Irene, Carmela; Pinter, Abraham; Peacock, James; Harris, Linda J; Sawant, Sheetal; Hraber, Peter; Shen, Xiaoying; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayapan, Sorachai; Berman, Phillip W; Robb, Merlin L; Pantaleo, Giuseppe; Zolla-Pazner, Susan; Haynes, Barton F; Alam, S Munir; Montefiori, David C; Tomaras, Georgia DInduction of broadly cross-reactive antiviral humoral responses with the capacity to target globally diverse circulating strains is a key goal for HIV-1 immunogen design. A major gap in the field is the identification of diverse HIV-1 envelope antigens to evaluate vaccine regimens for binding antibody breadth. In this study, we define unique antigen panels to map HIV-1 vaccine-elicited antibody breadth and durability. Diverse HIV-1 envelope glycoproteins were selected based on genetic and geographic diversity to cover the global epidemic, with a focus on sexually acquired transmitted/founder viruses with a tier 2 neutralization phenotype. Unique antigenicity was determined by nonredundancy (Spearman correlation), and antigens were clustered using partitioning around medoids (PAM) to identify antigen diversity. Cross-validation demonstrated that the PAM method was better than selection by reactivity and random selection. Analysis of vaccine-elicited V1V2 binding antibody in longitudinal samples from the RV144 clinical trial revealed the striking heterogeneity among individual vaccinees in maintaining durable responses. These data support the idea that a major goal for vaccine development is to improve antibody levels, breadth, and durability at the population level. Elucidating the level and durability of vaccine-elicited binding antibody breadth needed for protection is critical for the development of a globally efficacious HIV vaccine.IMPORTANCE The path toward an efficacious HIV-1 vaccine will require characterization of vaccine-induced immunity that can recognize and target the highly genetically diverse virus envelope glycoproteins. Antibodies that target the envelope glycoproteins, including diverse sequences within the first and second hypervariable regions (V1V2) of gp120, were identified as correlates of risk for the one partially efficacious HIV-1 vaccine. To build upon this discovery, we experimentally and computationally evaluated humoral responses to define envelope glycoproteins representative of the antigenic diversity of HIV globally. These diverse envelope antigens distinguished binding antibody breadth and durability among vaccine candidates, thus providing insights for advancing the most promising HIV-1 vaccine candidates.Item Open Access Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques.(PLoS Pathog, 2015-08) Santra, Sampa; Tomaras, Georgia D; Warrier, Ranjit; Nicely, Nathan I; Liao, Hua-Xin; Pollara, Justin; Liu, Pinghuang; Alam, S Munir; Zhang, Ruijun; Cocklin, Sarah L; Shen, Xiaoying; Duffy, Ryan; Xia, Shi-Mao; Schutte, Robert J; Pemble Iv, Charles W; Dennison, S Moses; Li, Hui; Chao, Andrew; Vidnovic, Kora; Evans, Abbey; Klein, Katja; Kumar, Amit; Robinson, James; Landucci, Gary; Forthal, Donald N; Montefiori, David C; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Rerks-Ngarm, Supachai; Robb, Merlin L; Michael, Nelson L; Kim, Jerome H; Soderberg, Kelly A; Giorgi, Elena E; Blair, Lily; Korber, Bette T; Moog, Christiane; Shattock, Robin J; Letvin, Norman L; Schmitz, Joern E; Moody, MA; Gao, Feng; Ferrari, Guido; Shaw, George M; Haynes, Barton FHIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses.Item Open Access Infectious virion capture by HIV-1 gp120-specific IgG from RV144 vaccinees.(J Virol, 2013-07) Liu, Pinghuang; Yates, Nicole L; Shen, Xiaoying; Bonsignori, Mattia; Moody, M Anthony; Liao, Hua-Xin; Fong, Youyi; Alam, S Munir; Overman, R Glenn; Denny, Thomas; Ferrari, Guido; Ochsenbauer, Christina; Kappes, John C; Polonis, Victoria R; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Montefiori, David C; Gilbert, Peter; Michael, Nelson L; Kim, Jerome H; Haynes, Barton F; Tomaras, Georgia DThe detailed examination of the antibody repertoire from RV144 provides a unique template for understanding potentially protective antibody functions. Some potential immune correlates of protection were untested in the correlates analyses due to inherent assay limitations, as well as the need to keep the correlates analysis focused on a limited number of endpoints to achieve statistical power. In an RV144 pilot study, we determined that RV144 vaccination elicited antibodies that could bind infectious virions (including the vaccine strains HIV-1 CM244 and HIV-1 MN and an HIV-1 strain expressing transmitted/founder Env, B.WITO.c). Among vaccinees with the highest IgG binding antibody profile, the majority (78%) captured the infectious vaccine strain virus (CM244), while a smaller proportion of vaccinees (26%) captured HIV-1 transmitted/founder Env virus. We demonstrated that vaccine-elicited HIV-1 gp120 antibodies of multiple specificities (V3, V2, conformational C1, and gp120 conformational) mediated capture of infectious virions. Although capture of infectious HIV-1 correlated with other humoral immune responses, the extent of variation between these humoral responses and virion capture indicates that virion capture antibodies occupy unique immunological space.Item Open Access Neutralization Takes Precedence Over IgG or IgA Isotype-related Functions in Mucosal HIV-1 Antibody-mediated Protection.(EBioMedicine) Astronomo, Rena D; Santra, Sampa; Ballweber-Fleming, Lamar; Westerberg, Katharine G; Mach, Linh; Hensley-McBain, Tiffany; Sutherland, Laura; Mildenberg, Benjamin; Morton, Georgeanna; Yates, Nicole L; Mize, Gregory J; Pollara, Justin; Hladik, Florian; Ochsenbauer, Christina; Denny, Thomas N; Warrier, Ranjit; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayapan, Sorachai; Kaewkungwal, Jaranit; Ferrari, Guido; Shaw, George M; Xia, Shi-Mao; Liao, Hua-Xin; Montefiori, David C; Tomaras, Georgia D; Haynes, Barton F; McElrath, Juliana MHIV-1 infection occurs primarily through mucosal transmission. Application of biologically relevant mucosal models can advance understanding of the functional properties of antibodies that mediate HIV protection, thereby guiding antibody-based vaccine development. Here, we employed a human ex vivo vaginal HIV-1 infection model and a rhesus macaque in vivo intrarectal SHIV challenge model to probe the protective capacity of monoclonal broadly-neutralizing (bnAb) and non-neutralizing Abs (nnAbs) that were functionally modified by isotype switching. For human vaginal explants, we developed a replication-competent, secreted NanoLuc reporter virus system and showed that CD4 binding site bnAbs b12 IgG1 and CH31 IgG1 and IgA2 isoforms potently blocked HIV-1JR-CSF and HIV-1Bal26 infection. However, IgG1 and IgA nnAbs, either alone or together, did not inhibit infection despite the presence of FcR-expressing effector cells in the tissue. In macaques, the CH31 IgG1 and IgA2 isoforms infused before high-dose SHIV challenge were completely to partially protective, respectively, while nnAbs (CH54 IgG1 and CH38 mIgA2) were non-protective. Importantly, in both mucosal models IgG1 isotype bnAbs were more protective than the IgA2 isotypes, attributable in part to greater neutralization activity of the IgG1 variants. These findings underscore the importance of potent bnAb induction as a primary goal of HIV-1 vaccine development.