Browsing by Author "Pitt, Geoffrey S"
- Results Per Page
- Sort Options
Item Open Access Cardiac phenotype in ATP1A3-related syndromes: A multicenter cohort study.(Neurology, 2020-11) Balestrini, Simona; Mikati, Mohamad A; Álvarez-García-Rovés, Reyes; Carboni, Michael; Hunanyan, Arsen S; Kherallah, Bassil; McLean, Melissa; Prange, Lyndsey; De Grandis, Elisa; Gagliardi, Alessandra; Pisciotta, Livia; Stagnaro, Michela; Veneselli, Edvige; Campistol, Jaume; Fons, Carmen; Pias-Peleteiro, Leticia; Brashear, Allison; Miller, Charlotte; Samões, Raquel; Brankovic, Vesna; Padiath, Quasar S; Potic, Ana; Pilch, Jacek; Vezyroglou, Aikaterini; Bye, Ann ME; Davis, Andrew M; Ryan, Monique M; Semsarian, Christopher; Hollingsworth, Georgina; Scheffer, Ingrid E; Granata, Tiziana; Nardocci, Nardo; Ragona, Francesca; Arzimanoglou, Alexis; Panagiotakaki, Eleni; Carrilho, Inês; Zucca, Claudio; Novy, Jan; Dzieżyc, Karolina; Parowicz, Marek; Mazurkiewicz-Bełdzińska, Maria; Weckhuysen, Sarah; Pons, Roser; Groppa, Sergiu; Sinden, Daniel S; Pitt, Geoffrey S; Tinker, Andrew; Ashworth, Michael; Michalak, Zuzanna; Thom, Maria; Cross, J Helen; Vavassori, Rosaria; Kaski, Juan P; Sisodiya, Sanjay MObjective
To define the risks and consequences of cardiac abnormalities in ATP1A3-related syndromes.Methods
Patients meeting clinical diagnostic criteria for rapid-onset dystonia-parkinsonism (RDP), alternating hemiplegia of childhood (AHC), and cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS) with ATP1A3 genetic analysis and at least 1 cardiac assessment were included. We evaluated the cardiac phenotype in an Atp1a3 knock-in mouse (Mashl+/-) to determine the sequence of events in seizure-related cardiac death.Results
Ninety-eight patients with AHC, 9 with RDP, and 3 with CAPOS (63 female, mean age 17 years) were included. Resting ECG abnormalities were found in 52 of 87 (60%) with AHC, 2 of 3 (67%) with CAPOS, and 6 of 9 (67%) with RDP. Serial ECGs showed dynamic changes in 10 of 18 patients with AHC. The first Holter ECG was abnormal in 24 of 65 (37%) cases with AHC and RDP with either repolarization or conduction abnormalities. Echocardiography was normal. Cardiac intervention was required in 3 of 98 (≈3%) patients with AHC. In the mouse model, resting ECGs showed intracardiac conduction delay; during induced seizures, heart block or complete sinus arrest led to death.Conclusions
We found increased prevalence of ECG dynamic abnormalities in all ATP1A3-related syndromes, with a risk of life-threatening cardiac rhythm abnormalities equivalent to that in established cardiac channelopathies (≈3%). Sudden cardiac death due to conduction abnormality emerged as a seizure-related outcome in murine Atp1a3-related disease. ATP1A3-related syndromes are cardiac diseases and neurologic diseases. We provide guidance to identify patients potentially at higher risk of sudden cardiac death who may benefit from insertion of a pacemaker or implantable cardioverter-defibrillator.Item Open Access Fibroblast Growth Factor 13 Regulates Thermogenesis and Metabolism(2019) Sinden, Daniel StephenThe non-secreted fibroblast growth factor (FGF) homologous factor (FHF) FGF13 is a noncanonical FGF with identified roles in neuronal development, pain sensation, and cardiac physiology, but recent reports suggest broader roles. The in vivo functions of FGF13 have not been widely studied. In this study, we have generated a global heterozygous Fgf13 knockout mouse model. In these animals, we observed hyperactivity and accompanying reduced core body temperature in mice housed at 22 °C. In mice housed at 30 °C (thermoneutrality) we observed development of a pronounced obesity. Defects in thermogenesis and metabolism were found to be due to impaired central nervous system regulation of sympathetic activation of brown fat. Neuronal and hypothalamic specific ablation of Fgf13 recapitulated weight gain at 30 °C. In global heterozygous animals, norepinephrine turnover in brown fat was reduced at both housing temperatures, while direct activation of brown fat by a β3 agonist showed an intact response. Further, we found that FGF13 is a direct regulator of NaV1.7, a hypothalamic Na+ channel associated with regulation of body weight. Our data expand the physiologic roles for FGF13, and enhance the understanding of the multifunctional FHFs.
Item Open Access Fibroblast Growth Factor Homologous Factors are Important Modulators of Cardiac Ion Channels(2014) Hennessey, Jessica AmentaFibroblast growth factor (FGF) homologous factors (FHFs, FGF11-14) are a family of FGFs that are not secreted, nor activate FGF receptors. Instead, they remain intracellular and bind to the voltage-gated Na+ channel C-terminus and modulate function. FGF14 is a locus for the neurodegenerative disease spinocerebellar ataxia 27 and the disease has been attributed to decreased neuronal excitability from changes in Na+ channel function. However, several lines of evidence, including data from heterologous expression systems and the distribution of FGF13 within the ventricular cardiomyocyte suggested that it also modulates the CaV1.2 voltage-gated Ca2+ channel. The central hypothesis to this study is that FHFs modulate both voltage-gated Na+ and Ca2+ channel channels in the ventricular cardiomyocyte and therefore are loci for cardiac arrhythmia. Using an adult ventricular cardiomyocyte system with adenoviral gene transfer, we manipulated the levels of FGF13 in the cell and performed electrophysiology, biochemistry and immunocytochemistry to analyze the effects on voltage-gated Ca2+ channel channel localization and function. We showed that FGF13 is in complex with Junctophilin-2 and modulates CaV1.2 current density and localization to the t-tubule, leading to changes in Ca2+ channel-induced Ca2+ channel release and ultimately a shortened ventricular action potential. Through collaboration with the Mayo Clinic, a mutation in FGF12, the most highly expressed FHF in human ventricle was found in a patient with Brugada syndrome. Using similar methodology, we determined that this mutation results specifically in a NaV1.5 loss of function without affecting CaV1.2 function, resulting in a Brugada-like ventricular action potential. This data shows that FHFs are potent modulators of multiple ion channels and novel arrhythmogenic loci.
Item Open Access Mechanisms of specificity in neuronal activity-regulated gene transcription.(2012) Lyons, Michelle RenéeIn the nervous system, activity-regulated gene transcription is one of the fundamental processes responsible for orchestrating proper brain development–a process that in humans takes over 20 years. Moreover, activity-dependent regulation of gene expression continues to be important for normal brain function throughout life; for example, some forms of synaptic plasticity important for learning and memory are known to rely on alterations in gene transcription elicited by sensory input. In the last two decades, increasingly comprehensive studies have described complex patterns of gene transcription induced and/or repressed following different kinds of stimuli that act in concert to effect changes in neuronal and synaptic physiology. A key theme to emerge from these studies is that of specificity, meaning that different kinds of stimuli up- and down regulate distinct sets of genes. The importance of such signaling specificity in synapse-to-nucleus communication becomes readily apparent in studies examining the physiological effects of the loss of one or more forms of transcriptional specificity – often, such genetic manipulations result in aberrant synapse formation, neuronal cell death, and/or cognitive impairment in mutant mice. The two primary loci at which mechanisms of signaling specificity typically act are 1) at the synapse – in the form of calcium channel number, localization, and subunit composition – and 2) in the nucleus – in the form of transcription factor expression, localization, and post-translational modification. My dissertation research has focused on the mechanisms of specificity that govern the activity-regulated transcription of the gene encoding Brain-derived Neurotrophic Factor(Bdnf). BDNF is a secreted protein that has numerous important functions in nervous system development and plasticity, including neuronal survival, neurite outgrowth, synapse formation, and long-term potentiation. Due to Bdnf’s complex transcriptional regulation by various forms of neural stimuli, it is well positioned to function as a transducer through which altered neural activity states can lead to changes in neuronal physiology and synaptic function. In this dissertation, I show that different families of transcription factors, and even different isoforms or splice variants within a single family, can specifically regulate Bdnf transcription in an age- and stimulus-dependent manner. Additionally, I characterize another mechanism of synapse-to-nucleus signaling specificity that is dependent upon NMDA-type glutamate receptor subunit composition, and provide evidence that the effect this signaling pathway has on gene transcription is important for normal GABAergic synapse formation. Taken together, my dissertation research sheds light on several novel signaling mechanisms that could lend specificity to the activity-dependent transcription of Bdnf exon IV. My data indicate that distinct neuronal stimuli can differentially regulate the Calcium-Response Element CaRE1 within Bdnf promoter IV through activation of two distinct transcription factors: Calcium-Response Factor (CaRF) and Myocyte Enhancer Factor 2 (MEF2). Furthermore, individual members of the MEF2 family of transcription factors differentially regulate the expression of Bdnf, and different MEF2C splice variants are unequally responsive to L-type voltage-gated calcium channel activation. Additionally, I show here for the first time that the NMDA-type glutamate receptor subunit NR3A (also known as GluN3A) is capable of exerting an effect on NMDA receptor-dependent Bdnf exon IV transcription, and that changes in the expression levels of NR3A may function to regulate the threshold for activation of synaptic plasticity-inducing transcriptional programs during brain development. Finally, I provide evidence that the transcription factor CaRF might function in the regulation of homeostatic programs of gene transcription in an age- and stimulus-specific manner. Together, these data describe multiple novel mechanisms of specificity in neuronal activity-regulated gene transcription, some of which function at the synapse, others of which function in the nucleus.Item Open Access Novel Roles for Fibroblast Growth Factor Homologous Factors in Caveolae-Mediated Cardioprotection(2016) Wei, EricFibroblast growth factor homologous factors (FHFs) are non-canonical members of the fibroblast growth factor family (FGF11-14) that were initially discovered to bind and regulate neuronal and cardiac voltage-gated Na+ channels. Loss-of-function mutations that disrupt interaction between FHFs and Na+ channels cause spinocerebellar ataxias and cardiac arrhythmias such as Brugada syndrome. Although recent studies in brain of FHF knockout mice suggested novel functions for FHFs beyond ion channel modulation, it is unclear whether FHFs in the heart serve additional roles beyond regulating cardiac excitability. In this study, we performed a proteomic screen to identify novel interacting proteins for FGF13 in mouse heart. Mass spectrometry analysis revealed an interaction between FGF13 and a complex of cavin proteins that regulate caveolae, membrane invaginations that organize protective signaling pathways and provide a reservoir to buffer membrane stress. FGF13 controls the relative distribution of cavin 1 between the plasma membrane and cytosol and thereby acts as a negative regulator of caveolae. In inducible, cardiac-specific Fgf13 knockout mice, cavin 1 redistributed to the plasma membrane and stabilized the caveolar structural protein caveolin 3, leading to an increased density of caveolae. In a transverse aortic constriction model of pressure overload, this increased caveolar abundance enhanced cardioprotective signaling through the caveolar-organized PI3 kinase pathway, preserving cardiac function and reducing fibrosis. Additionally, the increased caveolar reserve provided mechanoprotection, as indicated by reduced membrane rupture in response to hypo-osmotic stress. Thus, our results establish FGF13 as a novel regulator of caveolae-mediated mechanoprotection and adaptive hypertrophic signaling, and suggest that inhibition of FHFs in the adult heart may have cardioprotective benefits in the setting of maladaptive hypertrophy.
Item Open Access The Diversity of FHF-mediated Ion Channel Regulation(2015) Benjamin Pablo, Juan LorenzoFibroblast growth factor homologous factors (FHFs) are noncanonical members of the fibroblast growth factor family (FGFs, FGF11-FGF14) that bind directly to voltage gated sodium channels (VGSCs), thereby regulating channel activity and consequently neuronal excitability. Mutations in FGF14 cause spinocerebellar ataxia while FGF13 is a candidate for X-linked mental retardation. Since FGF13 and FGF14 are nearly identical within their respective VGSC-interacting domains, those distinct pathological consequences have generally been attributed to regional differences in expression. I have shown that FGF13 and FGF14 have non-overlapping subcellular distributions and biological roles even in hippocampal neurons where both are prominent. While both FHFs are abundant in the axon initial segment (AIS), only FGF13 is observed within the soma and dendrites. shRNA knockdown and rescue strategies showed that FGF14 regulates axonal VGSCs, while FGF13 only affects VGSCs in the somatodendritic compartment. Thus, FGF13 and FGF14 have nonredundant roles in hippocampal neurons, with FGF14 acting as an AIS-dominant positive regulator and FGF13 serving as a somatodendritic negative regulator. Both of these FHFs also perform important non-VGSC regulatory roles. FGF14 is a novel potassium channel regulator, which binds to KCNQ2 and regulates both localization and function. FGF14 is also capable of serving as a “bridge” between VGSCs and KCNQ2 thus implicating it as a broad organizer of the AIS. FGF13, on the other hand is involved in a new form of neuronal plasticity called axon initial segment structural plasticity. Knockdown of FGF13 impairs AIS structural plasticity and reduces L-type CaV current through channels known to be important to this new form of plasticity. Both of these novel non-VGSC roles are specific to the FHF in question because FGF13 does not regulate KCNQ2 whereas FGF14 knockdown does not affect AIS position. These data imply wider roles for FHFs in neuronal regulation that may contribute to differing roles in neural disease.