Browsing by Author "Pizzo, Salvatore V"
Results Per Page
Sort Options
Item Open Access Cell-Surface GRP78 and its Antibodies: Pathologic and Therapeutic Roles in Cancer(2010) de Ridder, Gustaaf GregoireThe chaperone protein GRP78 is primarily expressed in the endoplasmic reticulum, but it is also aberrantly expressed on the surface of cells under pathological conditions. One the cell membrane, GRP78 acts as a signaling molecule with unique properties. The amino-terminal domain acts as a growth factor receptor-like protein, while the carboxyl-terminal domain functions as a death-signaling receptor-like protein to extrinsically induce apoptosis. Autoantibodies that react with cell-surface GRP78 on many tumor cell lines occur in the sera of patients with prostate cancer, melanoma, and ovarian cancer. These autoantibodies are a negative prognostic factor in prostate cancer and melanoma, and when purified, stimulate tumor cell proliferation in vitro. It is unclear, however, whether these IgGs are merely a biomarker, or if they actually promote tumor growth in vivo. We immunized C57Bl/6 mice with recombinant GRP78 and then implanted the B16F1 murine melanoma cell line as flank tumors. We employed the antisera from these mice for in vitro cell signaling and proliferation assays. The immunodominant epitope in human cancer patients was well represented in the antibody repertoire of these immunized mice. We observed significantly accelerated tumor growth, as well as shortened survival in GRP78-immunized mice as compared to controls. Furthermore, antisera from these mice, as well as purified anti-GRP78 IgG from similarly immunized mice, stimulate Akt phosphorylation and proliferation in B16F1 and human DM6 melanoma cells in culture. These studies demonstrate a causal link between a humoral response to GRP78 and the progression of cancer in a murine melanoma model. They support the hypothesis that such autoantibodies are involved in the progression of human cancers and are not simply a biomarker. Because GRP78 is present on the surface of many types of cancer cells, this hypothesis has broad clinical and therapeutic implications.
We generated and characterized a panel of monoclonal murine antibodies (mAbs) against GRP78 with the goal of identifying therapeutic candidate IgGs. We developed three stable hybridomas that produce interesting antibodies. The N88 IgG reacts with the NH2-terminal domain and is an agonist. The C38 IgG reacts with the COOH-terminal domain and is an antagonist of NH2-terminal signaling. The C107 IgG binds the COOH-terminal domain and induces apoptosis.
We examined the effect of these three mAbs on the growth of B16 flank tumors. N88 accelerated and C107 slowed tumor growth, while C38 had no net effect. We are currently developing these antibodies and derivatives thereof as therapeutics for melanoma as well as for cancers of the brain, breast, ovary, and prostate. In fact, any tumor cell that over-expresses GRP78 on its surface is a potential therapeutic target for our future studies.
Item Open Access Dietary Carbohydrate Restriction Slows Prostate Tumor Growth(2008) Mavropoulos, John ChristakisGlucose metabolism remains an intensely explored topic of cancer biology since the initial discoveries of Otto Warburg nearly 80 years ago. Many solid tumors metabolize glucose primarily to lactate despite the availability of oxygen, revealing a dependence on glycolysis that may serve as a basis for targeted therapy. In particular, a diet devoid of carbohydrate may minimize the growth capabilities of glucose-dependent cancers. As our interests lie in prostate cancer, we examined whether a ketogenic diet devoid of carbohydrate (NCKD) would reduce the growth rate of tumors derived from human prostate cancer cell lines in a murine xenograft model.
Our initial experiments utilized the LAPC-4 cell line, a human androgen-sensitive prostate cancer cell line, in a SCID-mouse xenograft model to determine the effects of an NCKD on tumor growth and animal survival relative to two other diets: (1.) a Western-type diet (WD) reflecting consumptions patterns of men diagnosed with prostate-cancer in the Western world and (2.) a low-fat diet (LFD) representing the present standard of care. Following this study, we conducted a second study utilizing a different human prostate cancer cell line (LNCaP) in order to assess whether our initial observations were robust across multiple prostate cancer tumor models and to also further explore the molecular underpinnings of our observations. Both studies revealed the NCKD leads to a reduction in tumor growth rate and greater overall mouse survival relative to the WD. In addition, the NCKD was equivalent in these parameters to the LFD. We also observed key associations between survival and extent of urinary ketosis as well as favorable changes in insulin and insulin-like growth factor-1 (IGF-1) and gene expression that would be predictive of prolonged survival in mice consuming the NCKD.
We believe these data provide compelling evidence to consider a potential therapeutic role for dietary carbohydrate restriction in prostate cancer. We hope these results ultimately serve as a basis to conduct future clinical trials assessing whether dietary carbohydrate restriction, either alone or in combination with more conventional therapies, provides clinicians with an additional weapon against prostate cancer.
Item Open Access Evaluation of LMP-420: A Novel, Nontoxic Drug with Anti-Inflammatory Properties and Therapeutic Potential for CLL(2012) Mowery, Yvonne MarieB-cell chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world. Although treatment of this disease has advanced considerably over the past decade, CLL remains incurable with current chemotherapeutics. In addition, available drug regimens for CLL are associated with frequent cytopenia-related complications, such as infection and fatigue. Thus, the major challenge in CLL treatment today is the need for alternative therapeutics with decreased toxicity and improved efficacy for disease refractory to currently available drugs.
CLL is characterized by slow accumulation of malignant cells, which are supported in the microenvironment by cell-cell interactions and soluble cytokines such as tumor necrosis factor (TNF). We evaluated the effect of the small molecule TNF inhibitor LMP-420 on primary CLL cells. LMP-420 exhibited cytotoxic activity against these cells in the MTS assay, with similar potency to the front-line CLL drug fludarabine. LMP-420 induced time- and dose-dependent apoptosis in CLL cells, as demonstrated by annexin V staining, caspase activation, and DNA fragmentation. These changes were associated with decreased expression of the anti-apoptotic proteins Mcl-1, Bcl-xL, Bcl-2, and XIAP. CLL cells from patients with poor prognostic indicators exhibited LMP-420 sensitivity equal to that for cells from patients with favorable characteristics. In addition, LMP-420 potentiated the cytotoxic effect of fludarabine and inhibited in vitro proliferation of CLL cells. In contrast to other CLL therapeutics, LMP-420 exhibited minimal effects on normal peripheral blood mononuclear cell viability, mitogen-stimulated B- and T-cell proliferation, and hematopoietic colony formation. Our data suggest that LMP-420 may be a useful treatment for CLL with negligible hematologic toxicities.
The effect profile of this compound in normal immune cells and the microarray studies in CLL cells indicate that the mechanism of action of LMP-420 likely involves modulation of the NF-kB pathway. Our initial studies demonstrate moderate but significant inhibitory activity against p65, a key member of the NF-kB transcription factor family. Research is ongoing to gain a better understanding of the specific cytotoxicity of LMP-420 for CLL cells and to elucidate other components of its mechanism of action. Regardless of the ultimate mechanistic findings with LMP-420, our studies support this molecule as a promising new CLL therapeutic that warrants further preclinical evaluation.
Item Open Access Glucose-regulated protein (GRP78) is an important cell surface receptor for viral invasion, cancers, and neurological disorders.(IUBMB life, 2021-05-07) Gonzalez-Gronow, Mario; Gopal, Udhayakumar; Austin, Richard C; Pizzo, Salvatore VThe 78 kDa glucose-regulated protein (GRP78) is an endoplasmic reticulum (ER)-resident molecular chaperone. GRP78 is a member of the 70 kDa heat shock family of proteins involved in correcting and clearing misfolded proteins in the ER. In response to cellular stress, GRP78 escapes from the ER and moves to the plasma membrane where it (a) functions as a receptor for many ligands, and (b) behaves as an autoantigen for autoantibodies that contribute to human disease and cancer. Cell surface GRP78 (csGRP78) associates with the major histocompatibility complex class I (MHC-I), and is the port of entry for several viruses, including the predictive binding of the novel SARS-CoV-2. Furthermore, csGRP78 is found in association with partners as diverse as the teratocarcinoma-derived growth factor 1 (Cripto), the melanocortin-4 receptor (MC4R) and the DnaJ-like protein MTJ-1. CsGRP78 also serves as a receptor for a large variety of ligands including activated α2 -macroglobulin (α2 M*), plasminogen kringle 5 (K5), microplasminogen, the voltage-dependent anion channel (VDAC), tissue factor (TF), and the prostate apoptosis response-4 protein (Par-4). In this review, we discuss the mechanisms involved in the translocation of GRP78 from the ER to the cell surface, and the role of secreted GRP78 and its autoantibodies in cancer and neurological disorders.Item Open Access Incorporation of CpG Oligodeoxynucleotides into α2-Macroglobulin: Development of a Novel Vaccine Adjuvant Delivery Mechanism(2007-05-02T14:53:43Z) Anderson, Ryan BergerBacterial DNA is immunostimulatory, and the motifs responsible for this activity are unmethylated CpG dinucleotides. Following cellular uptake, CpG-containing oligodeoxynucleotides (CpG ODN) are trafficked to the endosome where they bind Toll-like receptor 9 (TLR9) to initiate a signaling cascade that culminates in the release of numerous pro-inflammatory cytokines. Because of their immunostimulatory properties, CpG ODN are being clinically evaluated as treatments and vaccine adjuvants for infectious diseases, cancer, and allergic disorders. α2-Macroglobulin (α2M) is a human plasma protein that binds and modulates the activity of a variety of cytokines, growth factors, enzymes, and antigens. Upon proteolytic activation, α2M is converted to its receptor recognized form, α2M*, and rapidly binds to and is internalized by immune competent cells expressing the α2M* endocytic receptor, LRP, and is then trafficked to the endosome. Based on these interactions, α2M seems to play an important role at sites of infection and inflammation by controlling the level of proteinase activity, modulating cytokine signals, and enhancing antigen processing for the adaptive immune response. Here, we report the first evidence that α2M* binds and forms stable complexes with nucleic acids. We have characterized the mechanisms and stoichiometry of this interaction, examined the pH and temperature stability of these complexes, and identified structural variables in the nucleic acids, namely length, base composition, and chemical modifications, that affect the nature of this interaction. We hypothesized that CpG ODN incorporation into α2M* may alter their immunostimulatory properties. Murine macrophages (MΦs) treated with α2M*-ODN complexes respond more rapidly and produce a greater cytokine response than those treated with free CpG ODN alone. Treating human PBMCs with α2M*-ODN complexes likewise demonstrated their enhanced ability to elicit immune responses. This was due to more rapid uptake and CpG ODN protection from degradation by extracellular nucleases. Co-incorporation of both protein ligands and CpG ODN into α2M* yields ternary complexes; these may permit the simultaneous delivery of both protein antigens and adjuvants to immune competent cells, potentially greatly enhancing the adaptive immune response and protective immunity. Based on the findings that incorporation into α2M* confers enhanced immunostimulatory activity of CpG ODN, this technology may be exploited to improve CpG ODN-based therapeutics by increasing efficacy, minimizing side effects, reducing dosing requirements, and reducing cost.Item Open Access Ligation of cell surface GRP78 with antibody directed against the COOH-terminal domain of GRP78 suppresses Ras/MAPK and PI 3-kinase/AKT signaling while promoting caspase activation in human prostate cancer cells.(Cancer Biol Ther, 2010-01) Misra, Uma K; Pizzo, Salvatore VWe have previously shown that treatment of prostate cancer and melanoma cells expressing GRP78 on their cell surface with antibody directed against the COOH-terminal domain of GRP78 upregulates and activates p53 causing decreased cell proliferation and upregulated apoptosis. In this report, we demonstrate that treatment of 1-LN prostate cancer cells with this antibody decreases cell surface expression of GRP78, Akt(Thr308) and Akt(Ser473) kinase activities and reduces phosphorylation of FOXO, and GSK3beta. This treatment also suppresses activation of ERK1/2, p38 MAPK and MKK3/6; however, it upregulates MKK4 activity. JNK, as determined by its phosphorylation state, is subsequently activated, triggering apoptosis. Incubation of cells with antibody reduced levels of anti-apoptotic Bcl-2, while elevating pro-apoptotic BAD, BAX and BAK expression as well as cleaved caspases-3, -7, -8 and -9. Silencing GRP78 or p53 gene expression by RNAi prior to antibody treatment abrogated these effects. We conclude that antibody directed against the COOH-terminal domain of GRP78 may prove useful as a pan suppressor of proliferative/survival signaling in cancer cells expressing GRP78 on their cell surface.Item Open Access Membrane GRP78: Pathologic and Therapeutic Roles in Ovarian Cancer(2014) Mo, LihongOvarian cancer is the fifth leading cause of cancer-related death in the United States and the most lethal gynecologic malignancy. Patients with ovarian cancer are generally diagnosed at stage III or IV, when ascites fluid becomes a common symptom. The volume of ascites positively correlates with the extent of ovarian cancer metastasis and negatively with prognosis; however, the mechanisms explaining their effect are unknown.
We hypothesize that ascites enriches for cancer stem-like cells. Our present study demonstrates that mice injected with ID8 cells, a murine epithelial ovarian cancer line, have remarkably shortened survival, when injected together with ascites supernatant derived from tumor-bearing mice. Moreover, compared to their counterparts cultured in regular medium, ID8 cells cultured in ascites fluid, or isolated directly from ascites, show an increased expression of stem cell markers Oct4 and CD133. These cells also exhibit enhanced self-renewing ability in sphere assay, suggesting that ascites enriches for stem-like cells.
Furthermore, we demonstrate that ascites enriches for cells expressing cell surface GRP78, a stress-inducible endoplasmic reticulum chaperone which also appears on the plasma membrane (memGRP78) of aggressive cancers. MemGRP78 + cells correlate with stem cell properties of self-renewal and tumor initiation, suggesting GRP78 is a novel stem cell marker. Importantly, antibodies against the COOH terminal domain of GRP78 significantly reduce the self-renewing ability of murine and human ovarian cancer cells pre-incubated with ascites.
In conclusion, our study demonstrates that ascites enriches for stem-like cells in ovarian cancer cell lines. Furthermore, the inhibitory effect of antibodies against the COOH terminal domain of GRP78 suggests that memGRP78 is a logical therapeutic target for ovarian cancer.
Item Open Access Metabolic Targeting of Cancer Cells: Two Molecular Mechanisms Involving Glucose Metabolism(2009) Quinones, Quintin JoseSelective therapeutic targeting of tumors requires identification of differences between the homeostatic requirements of cancer and host cells. One such difference is the manner in which cancer cells acquire energy. Cancer cells often grow in an environment of local hypoxia; under these conditions tumor cells depend on glycolysis for energy, but are unable to perform oxidative phosphorylation. Many tumor cells, despite normoxic conditions, continue to perform glycolysis without oxidative phosphorylation. The net result of glycolysis without oxidative phosphorylation is twofold: the need to consume a greater amount of glucose than a non-cancerous host cell, and the burden of increased intracellular lactic acid. The proteins responsible for the transport of lactic acid in and out of cells are known as the monocarboxylate transporters (MCTs). Monocarboxylate Transporter 1 (MCT1) and Monocarboxylate Transporter 4 (MCT4) are the MCTs that play a major role in the transport of lactic acid. Tumor cells depend on MCT1 and MCT4 activity to excrete excess intracellular lactic acid to maintain neutral intracellular pH and homeostasis. Using human neuroblastoma and prostate cancer cell lines this work demonstrates that tumor cells can be selectively targeted tumor under conditions of hypoxia or acidosis in vitro with the drug lonidamine, with a small molecule inhibitor selective for MCT1, or with RNA interference of MCT1. Inhibition of MCT1 activity in neuroblastoma cells under acidic extracellular conditions results in intracellular acidification and cell death. MCT1 mRNA is expressed in human neuroblastoma and positively correlated with clinical risk profile. Inhibition of MCT1 activity in hypoxic prostate cancer cells results in a reduction of lactate excretion, decreased intracellular pH, inhibition of ATP production, and subsequent cell death. MCT1 expression in sections of human prostate tumors has been demonstrated to validate MCT1 as a target in prostate cancer.
Through the Pasteur and Warburg effects, tumors have an increased demand for glucose. Some cancers store glycogen, but the reasons for this are largely unknown. It is hypothesized that tumor glycogen is used to promote tumor survival during transient hypoxia or low glucose, and that the mechanisms by which glycogen is stored is a potential therapeutic target in cancer. Tumors from human cell lines (WiDr, PC3, FaDu) have been grown in nude mice, sectioned and stained to measure glycogen storage. Using consecutive frozen sections, levels of hypoxia, glucose, lactate, ATP, and CD31, an endothelial cell marker, have been determined. These sections have been employed to elucidate the "architecture" of tumor metabolism in terms of vessel distance. Additionally, PAS-stained EF5 labeled human tumor samples were used to obtain calibrated hypoxia measurements to correlate with PAS. These studies demonstrate a correlation between hypoxia and the formation of glycogen deposits in human tumors and nude mouse xenografts. In cell culture, formation of glycogen deposits after exposure to hypoxia has been demonstrated, in addition to expression of glycogen synthase in human cancer cell lines.
The development of novel selective cancer chemotherapeutics will require the identification of differences between cancerous cells and normal host cells to exploit as targets. Several differences in metabolism, including the need to excrete excess lactic acid and store glycogen under hypoxic conditions, are such targets. Novel therapeutics exploiting these targets should be effective against cancer cells and minimally toxic to host cells.
Item Open Access Nuclear Basic Fibroblast Growth Factor Regulation of Triple-Negative Breast Cancer Dormancy/Recurrence(2014) Li, ShenduoChemotherapy remains the only available treatment for triple-negative (TN) breast cancer. Although some TN breast cancers respond initially to neoadjuvant chemotherapy, the majority of patients die within three years of treatment due to recurrent tumor growth. Developing ex vivo models for TN breast cancer recurrence and defining responsible molecules will be crucial to developing effective combination therapies for TN breast cancer patients. We have developed an in vitro model of TN breast cancer dormancy/recurrence. Short-term exposure of tumor cells to chemotherapy at clinically relevant doses enriches for a dormant tumor cell population. Several days after removing chemotherapy, dormant tumor cells regain proliferative ability and establish colonies, resembling tumor recurrence. Tumor cells from "recurrent" colonies exhibit increased chemotherapy resistance, resembling therapy resistance of recurrent tumors in patients. Furthermore, we identify a novel signaling axis [nuclear bFGF/DNA-dependent protein kinase (DNA-PK)] supported by chemotherapy-enriched dormant TN breast cancer cells. This signaling axis drives accelerated DNA repair in chemo-residual TN breast cancer cells. Targeting this axis with either with a bFGF shRNA or DNA-PK small molecule inhibitor blocks recurrent colony formation. Using the Oncomine gene expression database, we found that bFGF expression in tumor samples from TN breast cancer patients predicts five year tumor recurrence following neoadjuvant chemotherapy treatment. Finally, we demonstrate that recurrent tumor cells exhibit increased invasiveness, reflecting the aggressive behavior of recurrent tumors in patients. Collectively, these studies identify a novel signaling axis in TN breast cancer that likely contributes to tumor recurrence and provide molecular targets for developing future therapeutics against TN breast cancer.
Item Open Access Re-programming Immunity Against Glioblastoma via RNA Nanoparticle Vaccines(2015) Sayour, Elias JosephDespite aggressive surgical resection, cytotoxic chemotherapy, and external beam radiotherapy, most cases of glioblastoma (GBM) remain recalcitrant. These outcomes necessitate novel developmental therapeutics that spare normal tissue. Immunotherapy is a promising novel adjuvant treatment that can harness the cytotoxic capacity of the immune system against tumor-associated antigens with exquisite specificity. To circumvent the challenges associated with the advancement of adoptive cellular immunotherapy, we developed a novel treatment platform, which leverages the use of commercially available and clinically translatable nanoparticles (NPs) that can be combined with tumor derived RNA to peripherally activate T cells against GBM antigens. Although cancer vaccines have suffered from weak immunogenicity, we have advanced a NP vaccine formulation that can reshape a host’s immune profile through combinatorial delivery of RNAs encoding for tumor antigens and RNAs encoding for immunomodulatory molecules to mediate long-lived T cell persistence.
We sought to assess if vaccination with amplified tumor derived RNA encapsulated in lipophilic NPs could be assembled to transfect antigen presenting cells (APCs) in vivo and induce therapeutic anti-tumor immunity in pre-clinical murine tumor models. We hypothesized that RNA encapsulated nanoliposomes would localize to reticuloendothelial organs such as the spleen and liver, transfect APCs therein and induce peripheral antigen specific T cell immunity against GBM. Since activated T cells can cross the blood brain barrier and exert their effector functions against GBM antigens, peripheral transfection of APCs by RNA-NPs represents an attractive vaccination approach for priming endogenous immunity against refractory brain tumors.
We screened several translatable NP formulations for their ability to transfect dendritic cells (DCs) in vitro with GFP mRNA. We demonstrated that the NP DOTAP was the most promising translatable formulation compared to alternative cationic liposomal preparations and linear polyethylenimine NPs with and without DC targeting mannose receptors. RNA-NP vaccines formulated in DOTAP were shown to induce in vivo gene expression and preserve RNA stability over time. We determined that intravenous (IV) injection of RNA-NPs was requisite for inducing functional antigen specific immunity, which was superior to standard peptide vaccines formulated in complete Freund’s adjuvant (CFA). IV administered RNA-NPs localized to splenic and hepatic white blood cells (WBCs); these cells expanded antigen specific T cells when transferred to naïve immunocompetent mice. RNA-NPs induced increased percentages of B7 co-stimulatory molecules, but also elicited compensatory PD-L1 expression. We enhanced the immunogenicity and anti-tumor efficacy of RNA-NP vaccines by combining RNA-NPs with immune checkpoint blockade against PD-L1. We also enhanced the immunogenicity and efficacy of this platform by simply combining mRNAs encoding for immunomodulatory cytokines (i.e. GM-CSF). Finally, we demonstrated that RNA-NP vaccines mediate anti-tumor efficacy against intracranial and subcutaneous melanomas and engender therapeutic anti-tumor efficacy in a cellular immunotherapy model against a radiation/temozolomide resistant invasive murine high-grade glioma.
GBM remains invariably associated with poor patient outcomes thus necessitating development of more targeted therapeutics. Clinically translatable RNA-NPs form stable complexes making them amenable to overnight shipping. They induce potent immune responses when administered systemically and mediate robust anti-tumor efficacy that can be enhanced through co-delivery of immunomodulatory RNAs.
This technology can simultaneously bypass the complexity of cellular therapeutics while cutting down the time to generation of personalized vaccines. Since RNA-NP vaccines can be made within days from a tumor biopsy, providing near immediate immune induction against GBM, these formulations can provide a more feasible and effective therapy with a wide range of applicability for all malignancies that can be targeted using RNA obtained from surgical resection of solid tumors.
Item Open Access Receptor-Mediated Antigen Delivery by Α2-Macroglobulin: Effect on Cytotoxic T Lymphocyte Immunity and Implications for Vaccine Development(2009) Bowers, Edith VilletteThe receptor-recognized form of α2-macroglobulin (α2M*) targets antigens (Ag) to professional Ag-presenting cells (APCs) for rapid internalization, processing, and presentation. When employed as an Ag delivery vehicle, α2M* amplifies major histocompatibility complex (MHC) class II presentation as demonstrated by increased antibody (Ab) titers. Recent evidence, however, suggests that α2M*-encapsulation may also enhance Ag-specific cytotoxic T lymphocyte (CTL) immunity. In these studies, we demonstrate that α2M*-delivered Ag (ovalbumin, OVA) enhances the production of specific in vitro and in vivo CTL responses.
Murine splenocytes expressing a transgenic T cell receptor (TCR) specific for CTL peptide OVA257-264 (SIINFEKL) demonstrated up to 25-fold greater IFN-γ and IL-2 secretion when treated in vitro with α2M*-OVA compared to soluble OVA. The frequency of IFN-γ -producing cells was increased ~15-fold as measured by ELISPOT. Expansion of the OVA-specific CD8+ T cells, as assayed by tetramer binding and [3H]thymidine incorporation, and cell-mediated cytotoxicity, as determined by a flow cytometric assay, were also significantly enhanced by α2M*-OVA. Furthermore, CTL responses were observed at Ag doses tenfold lower than those required with OVA alone.
We also observed enhanced humoral and CTL responses by naïve mice following intradermal immunization with α2M*-OVA. These α2M*-OVA-immunized mice displayed increased protection against a subcutaneously implanted OVA-expressing tumor, as demonstrated by delayed tumor growth and prolonged animal survival. The anti-tumor response observed with α2M*-mediated Ag delivery was comparable to that of an accepted vaccine adjuvant (CpG 1826) and appeared superior to a cell-based vaccine technique.
To further understand the mechanism underlying this enhanced CTL immunity, the subsets of professional APCs capable of cross-presenting α2M*-encapsulated Ag were investigated. Although both dendritic cells (DCs) and macrophages appear to stimulate some degree of cross-priming in response to α2M*-encapsulated Ag, CD8+CD4- and CD8-CD4+ DCs appear to do so with the greatest efficiency. The implications of this finding to the ongoing debate regarding the relative contributions of APC subsets to Ag cross-presentation and the determinants of which cells cross-present with high efficiency are discussed.
These observations demonstrate that α2M*-mediated Ag delivery promotes cross-presentation resulting in enhanced Ag-specific CTL immunity. Considered in the context of previous work, these results support α2M* as an effective Ag delivery system that may be particularly useful for vaccines based on weakly immunogenic subunits or requiring dose sparing.
Item Open Access Soluble Tie 2: Mechanisms of Regulation and Role in Modulating Angiogenesis(2009) Findley, Clarence MauriceAngiogenesis, the production of new vessels from pre-existing vasculature, is a complex biological process that is dependent on a series of regulated events, including endothelial cell (EC) proliferation, migration, survival, and capillary morphogenesis (tube formation). These events are required for angiogenesis to occur properly and the steps are regulated by a variety of vascular growth factors and their receptors. Tie2, an endothelial receptor tyrosine kinase (RTK), is required for embryonic and postnatal angiogenesis. Studies have demonstrated that Tie2 is proteolytically cleaved, producing a 75 kDa soluble receptor fragment (sTie2). However, the mechanisms and function of sTie2 have not been elucidated. Here, we investigated signaling pathways and effector molecule(s) responsible for Tie2 cleavage. Additionally, we investigated the role of other growth factors and conditions on the degree of Tie2 cleavage. Finally, we examined sTie2 levels in peripheral artery disease, a human model of ischemic disease. We demonstrated that Tie2 cleavage is VEGF- and PI3K/Akt-dependent and sTie2 can bind Ang1 and Ang2 and prevent ligand-mediated Tie2 activation and downstream cellular responses. Also, ADAM15 cleaves Tie2 in a hypoxia-dependent manner and this response was also observed to be VEGF-mediated. With respect to peripheral artery disease, sTie2 levels were only significantly elevated in the most angiogenically compromised group (critical limb ischemia) of patients. These data shed light on the mechanism and function of Tie2 cleavage and suggest a role for sTie2 in mediating the angiogenic process.
Item Open Access The Role of Autophagy and Translation Initiation Factors in Overcoming Resistance to mTOR Inhibitors in Prostate Cancer.(2013) Herbert, James TaylorCastration resistant prostate cancer (CRPC) causes significant morbidity and mortality around the world and improving treatment options for patients with CRPC is a major concern for biomedical research. Because of the importance of activating mutations in the PI3K/AKT/mTOR pathway in prostate cancer, several mTOR inhibitors have been tested for efficacy in CRPC but despite promising preclinical findings, the results of clinical trials have been disappointing. The findings of several groups, including a clinical trial of RAD001 conducted at Duke, suggest that feedback upregulation of PI3K and autophagy may be potential mechanisms for resistance of CRPC to mTOR inhibitor therapy.
The main goal of this dissertation was to explore these mechanisms in vitro and to determine if combinations of PI3K inhibitors and different classes of mTOR inhibitors can overcome resistance to mTOR inhibitor monotherapy. In particular, we used immunoblotting, reverse phase protein microarrays, polysome profile analysis, cell cycle analysis, and several techniques for determining cell survival and proliferation to explore the differences in survival, proliferation, autophagy, and activity of the AKT, translation initiation, and autophagy cell signaling networks between prostate cancer cell lines treated with different combinations of mTOR and PI3K inhibitors. Our findings revealed that the combination of PI3K and mTOR inhibition leads to a synergistic inhibition of prostate cancer cell survival and cytostasis that is correlated decreased translation rates, hypophosphorylation of 4E-BP1, autophagy, and an uncoupling of normal signaling between AKT and mTOR. We were able produce an effect on cell survival similar to treatment with high doses of mTOR/PI3K inhibitor combinations by inhibiting cap-dependent translation using a non-phosphorylatable mutant of 4E-BP1. In contrast, knocking down two major autophagy genes had little to no effect on the survival of prostate cancer cells treated with PI3K/mTOR inhibitors but did protect from cell death caused by the UPR activator tunicamycin.
We conclude that treatment strategies that target PI3K, mTORC1 and mTORC2 simultaneously have the potential to be clinically useful in CRPC, probably due to the increased inhibition of eIF4E activity and cap-dependent translation when compared to monotherapy with allosteric mTORC1 inhibitors. Although autophagic cell death can be induced in prostate cancer cells, the autophagy observed after inhibition of PI3K and mTOR does not appear to contribute to cell death and is not a major resistance mechanism under these conditions. Nevertheless, we did observe different roles for autophagy in the survival of cells exposed to different types of stressors, and further elucidation of autophagy signaling networks may yet provide useful clinical targets.